储液-桩基LNG储罐地震离心模型试验设计方法

    逯屹腾, 汤兆光, 王永志, 周中一, 孙锐

    逯屹腾, 汤兆光, 王永志, 周中一, 孙锐. 储液-桩基LNG储罐地震离心模型试验设计方法[J]. 岩土工程学报, 2024, 46(S1): 175-179. DOI: 10.11779/CJGE2024S10043
    引用本文: 逯屹腾, 汤兆光, 王永志, 周中一, 孙锐. 储液-桩基LNG储罐地震离心模型试验设计方法[J]. 岩土工程学报, 2024, 46(S1): 175-179. DOI: 10.11779/CJGE2024S10043
    LU Yiteng, TANG Zhaoguang, WANG Yongzhi, ZHOU Zhongyi, SUN Rui. Design method for seismic centrifugal model tests on liquid-storgae tank-pile group interaction[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 175-179. DOI: 10.11779/CJGE2024S10043
    Citation: LU Yiteng, TANG Zhaoguang, WANG Yongzhi, ZHOU Zhongyi, SUN Rui. Design method for seismic centrifugal model tests on liquid-storgae tank-pile group interaction[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 175-179. DOI: 10.11779/CJGE2024S10043

    储液-桩基LNG储罐地震离心模型试验设计方法  English Version

    基金项目: 

    中国地震局工程力学研究所基本科研业务费专项项目 2023B08

    黑龙江省自然科学基金项目 LH2023E019

    详细信息
      作者简介:

      逯屹腾(1999—),男,硕士研究生,主要从事LNG储罐抗震、离心机试验方面的研究。E-mail: lyt1009962621@163.com

      通讯作者:

      汤兆光,E-mail: tzg158135@163.com

    • 中图分类号: TU43

    Design method for seismic centrifugal model tests on liquid-storgae tank-pile group interaction

    • 摘要: LNG储罐作为国家重要的战略能源储备工程,正快速向超高容量、超大直径、半地下化趋势发展,并对抗震安全性要求极高。针对离心模型试验规格尺寸限制,提出一种以储罐自振周期、晃动周期和抗弯刚度为主要控制参数的LNG储罐试验设计方法,并以原型为27万m3的大型储罐开展了相应动力离心试验,验证了设计方法的合理性并分析了其地震响应。结果表明:试验得到的自振周期与规范计算值较为接近,误差为5.6%,验证了该试验设计方法的可靠性;储液晃动频率与荷载幅值变化关系不大,主要与储罐形状、液面高度有关,储液晃动波高与荷载幅值呈现明显正相关;桩基础可以提升LNG储罐的安全性,相同荷载激励下,有桩储罐比无桩储罐晃动波高减小约8.2%。
      Abstract: The LNG storage tank is a significant national strategic energy reserve project, rapidly developing towards ultra-high capacity, ultra-large diameter and semi-underground, with extremely high seismic safety requirements. In this study, aiming at the size limitations of the centrifugal model test specifications, a design method for seismic centrifugal model tests on LNG storage tanks is proposed, which takes the natural vibration period, sloshing period and bending stiffness of the tanks as the main control parameters. The dynamic centrifugal model tests are carried out on a large storage tank with a prototype of 270000 m3, the rationality of the design method is verified, and the seismic response of the storage tank is analyzed. The results indicate the natural vibration period of the storage tank obtained by the tests is close to the value of the specification, differing by 5.4%, which verifies the reliability of the test design method. The sloshing frequency of the liquid storage has little relationship with the change of the load amplitude, mainly relates to the shape of the tank, liquid level height, while the liquid sloshing wave height and the load amplitude show a significant positive correlation. The pile foundation can improve the safety of the LNG storage tanks, and under the same load excitation, the sloshing wave height of the piled tanks is reduced by about 8.2% compared with that of the unpiled tanks.
    • 图  1   DCIEM-40-300大型离心机振动台系统

      Figure  1.   Shaking table test system of DCIEM-40-300 centrifuge

      图  2   动力离心试验模型设计

      Figure  2.   Design configuration of test models

      图  3   试验实物图

      Figure  3.   Physical map of tests

      图  4   施加实测振动荷载

      Figure  4.   Applied seismic loading records

      图  5   储罐加速度傅里叶变换谱比

      Figure  5.   Fourier transform acceleration spectral ratios of storage tank

      图  6   储液晃动波高时程

      Figure  6.   Time histories of liquid storage of sloshing

      图  7   不同幅值荷载作用下储液晃动波高

      Figure  7.   Sloshing wave heights of liquid storage under different amplitude loads

      表  1   试验模型参数

      Table  1   Parameters of test model

      结构 参数指标 原型 模型
      罐体 外径/m 96 0.4
      壁高/m 47 0.28
      壁厚/mm 30 5
      自振周期/s 0.575 0.01145
      群桩 外径/mm 500 15.0
      内径/mm 300 13.6
      抗弯刚度/(N·m2) 1.708×109 277.846
      下载: 导出CSV

      表  2   规范计算周期与试验周期对比

      Table  2   Comparison between calculated and test periods

      GB 50341 GB 50761 API STD 650-2013 Haroun-Housner力学模型 试验结果
      4.90 s 4.83 s 4.80 s 4.92 s 5.00 s
      下载: 导出CSV
    • [1] 国家发展改革委. 天然气发展"十三五"规划[EB/OL]. 2016.

      National Development and Reform Commission. Natural gas development "The 13th Five-Year" plan[EB/OL]. 2016. (in Chinese)

      [2] 国家发展改革委, 国家能源局. "十四五"现代能源体系规划[EB/OL]. 2022.

      National Development and Reform Commission, National Energy Administration. "The 14th Five-Year" Modern Energy System Plan[EB/OL]. 2022. (in Chinese)

      [3]

      TAZUKE H, YAMAGUCHI S. Seismic proving test of equipment and structures in thermal conventional power plant[J]. Journal of Pressure Vessel Technology-Transaction of the ASME, 2002, 124(2): 133-143. doi: 10.1115/1.1460905

      [4] 罗东雨, 孙建刚, 柳春光, 等. 桩-土-LNG储罐振动台试验与数值仿真分析[J]. 振动工程学报, 2021, 34(3): 515-527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202103009.htm

      LUO Dongyu, SUN Jiangang, LIU Chunguang, et al. Pile-soil-LNG storage tank shaking table test and numerical simulation analysis[J]. Journal of Vibration Engineering, 2021, 34(3): 515-527. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202103009.htm

      [5]

      CHEN Z, XU Z, LIU Y, et al. Seismic response of a large LNG storage tank based on a shaking table test[J]. Applied Sciences, 2022, 12(15): 7663. doi: 10.3390/app12157663

      [6]

      ZHOU L J, XU T, LU Z H, et al. A study on the sloshing problem of vertical storage tanks under the action of near-fault earthquakes[J]. Advances in Civil Engineering, 2020, 2020(2): 1-10.

      [7]

      PARK H J, HA J G, KWON S Y, et al. Investigation of the dynamic behavior of a storage tank with different foundation types focusing on the soil-foundation-structure interactions using centrifuge model tests[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(14): 2301-2316. doi: 10.1002/eqe.2905

      [8]

      SAHRAEIAN S M S, TAKEMURA J, SEKI S. An investigation about seismic behavior of piled raft foundation for oil storage tanks using centrifuge modelling[J]. Soil Dynamics and Earthquake Engineering, 2018, 104: 210-227.

      [9] 汤兆光. 超重力试验动态孔压传感器设计方法、性能评价与应用[D]. 北京: 中国地震局工程力学研究所, 2023.

      TANG Zhaoguang. Design Method and Performance Evaluation of Dynamic Miniature Pore Water Pressure Transducer in Centrifuge Modelling and Its Application[D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration, 2023. (in Chinese)

      [10]

      American Petroleum Institute. API 650-2013 Welded Tanks for Oil Storage[S]. Washington D C: A P Institute, 2013.

      [11] 立式圆筒形钢制焊接油罐设计规范: GB 50341—2014[S]. 北京: 中国计划出版社, 2014.

      Design Specification for Vertical Cylindrical Steel Welded Oil Tanks: GB50341—2014[S]. Beijing: China Planning Publishing House, 2014. (in Chinese)

      [12] 石油化工钢制设备抗震设计规范: GB 50761—2012[S]. 北京: 中国计划出版社, 2012.

      Code for Seismic Design of Petrochemical Steel Equipment: GB 50761—2012[S]. Beijing: China Planning Publishing House, 2012. (in Chinese)

      [13] 土工离心模型试验技术规程: DL/T 5102-2013[S]. 北京: 中国电力出版社, 2014.

      Specification for Geotechnical Centrifuge Model Test Techniques: DL/T 5102-2013[S]. Beijing: China Electric Power Press, 2014. (in Chinese)

    图(7)  /  表(2)
    计量
    • 文章访问数:  0
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-04-28
    • 刊出日期:  2024-07-31

    目录

      /

      返回文章
      返回