Centrifugal model tests on characteristics of deep foundation pits in starting well of shield tunneling machine
-
摘要: 为探究盾构机始发井深基坑开挖过程中周边土体的应力、变形和土压力分布规律,通过对工程原型进行概化,在典型土层条件下,采用停机-开挖-支护的模拟方式开展了方形基坑和圆形基坑两种方案共2组离心模型试验,从地连墙的弯矩和其后土体的水平位移、基坑外侧土压力分布以及地表沉降等角度,对比分析了两种盾构机始发井深基坑开挖过程的工程特性。结果表明:地面沉降随基坑开挖深度增大逐渐增加,形成沉降槽状;地连墙土压力变化呈非线性,随着基坑开挖不断深入的,离地表较近处的土压力逐渐变大,而深处的土压力则逐渐减小;在第5步开挖时2组模型地下连续墙水平位移均达到最大值,圆形基坑是方形基坑的1.4倍,同时地连墙的弯矩也达到最大值,圆形基坑比方形基坑小320 kN·m。研究成果可为深埋隧道深基坑的优化设计和开挖提供指导。Abstract: In order to explore the stress, deformation and soil pressure distribution of the surrounding soils during the excavation process of deep foundation pits in starting well of the shield tunneling machine, two sets of centrifugal model tests are conducted using the simulation method of shutdown excavation support under typical soil conditions, including square foundation pit and circular foundation pit, by generalizing the engineering prototype. The bending moment of the diaphragm wall and the horizontal displacement of the subsequent soil are analyzed A comparative analysis is conducted on the engineering characteristics of two types of shield tunneling machines during the excavation process of the deep foundation pits, including the distribution of soil pressure on the outer side of the foundation pit and surface settlement. The results show that the ground settlement gradually increases with the increase of the excavation depth of the foundation pit, forming a settlement trough shape. The variation of soil pressure on the diaphragm wall is non-linear. As the excavation of the foundation pit deepens, the soil pressure near the surface gradually increases, while the soil pressure at the deeper depth gradually decreases. In the fifth step of excavation, the horizontal displacements of the underground continuous walls in both models reach their maximum values. The circular foundation pit is 1.4 times that of the square foundation pit, and the bending moment of the underground continuous wall also reaches its maximum value. The circular foundation pit is 320 kN·m smaller than the square foundation pit. The research results can provide guidance for the optimization design and excavation of deeply buried tunnels and deep foundation pits.
-
-
-
[1] 褚峰, 李永盛, 梁发云, 等. 土体小应变条件下紧邻地铁枢纽的超深基坑变形特性数值分析[J]. 岩石力学与工程学报, 2010, 29(增1): 3184-3192. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1087.htm CHU Feng, LI Yongsheng, LIANG Fayun, et al. Numerical analysis on deformation of deep excavation adjacent to metro considering small-strain stiffness of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3184-3192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1087.htm
[2] 汪中卫. 考虑时间与小应变的地铁深基坑变形及土压力的研究[D]. 上海: 同济大学, 2004. WANG Zhongwei. Research on Deformation and Soil Pressure of Subway Deep Foundation Pits Considering Time and Small Strain[D]. Shanghai: Tongji University, 2004. (in Chinese)
[3] BENZ T, VERMEER P A, SCHWAB R. A small-strain overlay model[J]. Intemational Journal for Numerical and Analytical Methodsin Geomechanics, 2009, 33(1): 25-44. doi: 10.1002/nag.701
[4] BENZ T. Small-Strain Stiffness of Soils and Its Numerical Consequences[D]. Stuttgart: Stuttgart University, 2007.
[5] 宋玉芹, 林永亮. 大直径盾构隧道近距离穿越桩基的方案比选[J]. 中外公路, 2020(6): 23l-236. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL202006051.htm (SONG Yuqin, LIN Yongliang. Scheme comparison of large diameter shield tunnel going through pile foundation[J]. Journal of Chinese & Foreign Highway, 2020(6): 23l-236. (in Chinese https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL202006051.htm
[6] 李进军, 王卫东. 紧邻地铁区间隧道深基坑工程的设计和实践[J]. 铁道工程学报, 2011, 28(11): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201111021.htm LI Jinjun, WANG Weidong. Design and construction of deep excavation engineering adjacent to the subway tunnel[J]. Journal of Railway Engineering Society, 2011, 28(11): 104-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201111021.htm
[7] 戴志仁, 王俊, 胡瑞青, 等. 城市轨道交通大直径盾构隧道若干关键技术[J]. 铁道工程学报, 2021, 38(6): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202106015.htm DAI Zhiren, WANG Jun, HU Ruiqing. Key technologies for the application of large diameter shield tunnel in urban railway[J]. Journal of Railway Engineering Society, 2021, 38(6): 75-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202106015.htm
[8] 马险峰, 张海华, 朱卫杰, 等. 软土地区超深基坑变形特性离心模型试验研究[J]. 岩土工程学报, 2009, 31(9): 1371-1377. http://cge.nhri.cn/cn/article/id/13368 MA Xianfeng, ZHANG Haihua, ZHU Weijie, et al. Centrifuge modeltests on deforma tion of ultra. deep foundation pits in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1371-1377. (in Chinese) http://cge.nhri.cn/cn/article/id/13368
[9] 杨龙才, 周顺华. 南京某地铁深基坑围护结构方案的比选研究[J]. 地下空间与工程学报, 2006, 2(3): 453-458. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200603025.htm YANG Longcai, ZHOU Shunhua. Comparison and selection of enclosure structure schemes of certain metro deep foundation pit in nanjing[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(3): 453-458. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200603025.htm
[10] 梁发云, 褚峰, 宋著, 等. 深基坑变形特性的离心模型试验、数值计算与现场实测对比分析[J]. 长江科学院院报, 2012, 29(1): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201201021.htm LIANG Fayun, CHU Feng, SONG Zhu, et al. Comparison of deformation behavior of deep excavation among centrifuge model test, numerical analysis and in-situ monitoring[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(1): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201201021.htm