Research on the relative density of sand and gravel filled underwater based on geotechnical centrifuge tests
-
摘要: 水下抛填散粒料常用于围堰、大坝等水利工程的建设,抛填体的相对密度直接决定了工程的变形和稳定性。以汉江某水电站大坝工程的单戗立堵水下抛填为原型条件,基于长科院CKY200大型岩土离心模型试验平台,研制了离心场中单戗立堵水下填筑试验装置,研究散粒料级配、抛填水深、上部堆载高度等影响因素下抛填体相对密度的分布规律。试验结果表明,水深12 m条件抛填平均相对密度约为0.27~0.36,抛填体上部再施加14.3 m上覆堆载后可增大至0.52~0.68,水下抛填密度受砂砾石颗粒级配影响较大,当级配良好时,水下抛填相对密度较大,可达到中密—密实状态,而级配不良时,为松散—中密状态;抛填深度越大,由于抛填料的压重而使得中下部相对密度增大;当抛填体上部施加竖向均布荷载作用时,抛填体尤其是较浅区域的相对密度显著提高。研究成果为充分利用当地散粒体材料进行水下抛填工程的设计和施工提供依据。Abstract: Underwater dumping and filling of loose particles is often used in the construction of water conservancy projects such as cofferdams and dams. The compactness of the backfill directly determines the deformation and stability of the project. Experimental and theoretical research was conducted under the prototype condition of a hydropower station dam project with underwater filling in the Han River. Based on the CKY200 large-scale geotechnical centrifuge model test platform of Changjiang River Scientific Research Institute, a single embankment vertical blockage underwater filling test device in a centrifuge field is developed. Using this experimental device, the distribution laws of the compactness of the dumping body under the factors such as the gradation of loose particles, the depth of dumping and filling and the height of upper loading are studied. When the water depth is 12 meters, the average relative density obtained by underwater filling is about 0.27~0.36, and increases to 0.52~0.68 for an additional 14.3 m overlying load. The particle size distribution of sand and gravel plays an important role in the underwater filling density. When the particle gradation of the filling materials is good, the underwater filling materials have a higher compactness, which can reach a dense state. When the gradation is poor, the compactness is lower. The greater the depth of filling, the greater the compactness formed. When the vertical compression is applied to the upper part of the backfill, the compactness of the backfill, especially in shallow areas, is significantly improved. The research results provide a basis for the design and construction of underwater dumping and filling projects, especially for fully utilizing the local granular materials.
-
-
表 1 单戗立堵水下抛填离心试验方案
Table 1 Centrifugal test plans for single embankment vertical blocking underwater dumping and filling
编号 抛填料 试验内容 XJ-1 砂砾石,上游围堰级配 设定最大离心加速度40g,模拟原型进占式抛填方式
试验工况:12 m水深条件下水下抛填密度;12 m水深+14.3 m上覆堆载下的水下抛填体密度;不同水深(5~20 m)的水下抛填密度变化规律XJ-2 砂砾石,下游围堰级配 XJ-3 砂砾石,下游围堰堤头附近级配 表 2 模型抛填料的最大密度和最小密度
Table 2 Maximum and minimum densities of model filling materials
编号 抛填料 最大密度/(g·cm-3) 最小密度/(g·cm-3) XJ-1 砂砾石,上游围堰级配 2.12 1.88 XJ-2 砂砾石,下游围堰级配 2.10 1.85 XJ-3 砂砾石,下游围堰堤头附近级配 1.99 1.73 表 3 单戗立堵水下抛填离心试验结果
Table 3 Centrifugal test results for single embankment vertical blocking underwater dumping and filling
编号 抛填料 水下抛填密度 12 m水深条件 12 m水深+14.3 m上覆堆载 干密度/ (g·cm-3) 相对密度 干密度/(g·cm-3) 相对密度 XJ-1 砂砾石,上游围堰级配 1.951 0.33 2.012 0.58 XJ-2 砂砾石,下游围堰级配 1.936 0.36 2.016 0.68 XJ-3 砂砾石,下游围堰堤头附近级配 1.788 0.27 1.852 0.52 表 4 模型抛填料的最大和最小孔隙比
Table 4 Maximum and minimum void ratios of model filling materials
编号 抛填料 emax emin XJ-1 砂砾石,上游围堰级配 0.41 0.25 XJ-2 砂砾石,下游围堰级配 0.43 0.26 XJ-3 砂砾石,下游围堰堤头附近级配 0.53 0.33 -
[1] 郑守仁. 三峡工程大江截流及二期围堰设计主要技术问题论述[J]. 人民长江, 1997(4): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE704.000.htm ZHENG Shouren. Major technical problems about river closure and second stage cofferdam design at Three Gorges Project[J]. Ren Min Changjiang, 1997(4): 3-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE704.000.htm
[2] 包承纲, 李玫. 60 m水深中抛填土体的密度怎么测[J]. 地基处理, 2021, 3(6): 538-540. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL202106016.htm BAO Chenggang, LI Mei. Density measurement method of dumped soil in 60 m water depth[J]. Journal of Ground Improvement, 2021, 3(6): 538-540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL202106016.htm
[3] 程永辉, 饶锡保, 周小文. 散粒料水下抛填堰体密度的离心模型试验研究[J]. 长江科学院院报, 2013, 30(10): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201310009.htm CHENG Yonghui, RAO Xibao, ZHOU Xiaowen. Centrifugal model tests on the density of cofferdam formed by underwater granular material packing[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(10): 42-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201310009.htm
[4] 李青云, 程展林. 三峡工程二期围堰运行后的性状分析[J]. 岩土工程学报, 2005, 27(4): 410-413. http://cge.nhri.cn/cn/article/id/11643 LI Qingyun, CHENG Zhanlin. Analysis of the behaviour of stage Ⅱ cofferdam of TGP[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 410-413. (in Chinese) http://cge.nhri.cn/cn/article/id/11643
[5] MAHMOUDI Y, CHERIF TAIBA A, HAZOUT L, et al. Packing density and overconsolidation ratio effects on the mechanical response of granular soils[J]. Geotechnical and Geological Engineering, 2020, 38(1): 723-742. doi: 10.1007/s10706-019-01061-2
[6] ABDELLAH C T, MOSTEFA B, TOM S, et al. Experimental investigation into the influence of roundness and sphericity on the undrained shear response of silty sand soils[J]. Geotechnical Testing Journal, 2018, 41(3).
[7] WEI Y, YANG Y, TAO M. Effects of gravel content and particle size on abrasivity of sandy gravel mixtures[J]. Engineering Geology, 2018, 243: 26-35. doi: 10.1016/j.enggeo.2018.06.009
[8] CHANG W, PHANTACHANG T. Effects of gravel content on shear resistance of gravelly soils[J]. Engineering Geology, 2016, 207: 78-90. doi: 10.1016/j.enggeo.2016.04.015
[9] KALMAN H. Bulk densities and flowability of mono-sized, binary mixtures and particle size distributions of glass spheres[J]. Powder Technology, 2022, 397: 117086. doi: 10.1016/j.powtec.2021.117086
[10] CHEN J, CAI X, LALE E, et al. Centrifuge modeling testing and multiscale analysis of cemented sand and gravel (CSG) dams[J]. Construction and Building Materials, 2019, 223: 605-615. doi: 10.1016/j.conbuildmat.2019.06.218
[11] RASSOULUY S M K. The packing density of perfect binary mixtures[J]. Powder Technology, 1999, 103(2): 145-150. doi: 10.1016/S0032-5910(98)00223-X
-
期刊类型引用(9)
1. 梁喜凤,史延楠,秦叶波,姚莹,张慧,王永维. 不同含水率与静置时间下滩涂土壤流变特性试验. 农业工程学报. 2024(01): 182-190 . 百度学术
2. 陈涛. 充分利用海洋环境提升声呐装备性能的研究. 数字海洋与水下攻防. 2024(02): 156-163 . 百度学术
3. 张少雄,宋涛,郝鑫平,张力霆,陈剑刚. 赤泥浆体流变特性和流变模型适用性研究. 三峡大学学报(自然科学版). 2023(01): 48-53 . 百度学术
4. 梁志超,张爱军,任文渊,胡海军,王毓国,李双村. 不同含水率高易溶盐含量的伊犁黄土流变特性. 农业工程学报. 2023(05): 90-99 . 百度学术
5. 刘杰锋,李飒,段贵娟,王奕霖. 稳态剪切条件下中国南海软黏土的相态转变特性及流变模型. 岩土力学. 2023(S1): 341-349 . 百度学术
6. 张博珊,王辉,陈熹. 一种考虑固相浓度作用的改进泥浆流变模型. 土木工程学报. 2023(S1): 134-141 . 百度学术
7. 李家平,朱克超,周旋,陈衍力,李昱洋,马雯波. 深海富稀土沉积物的流变特性研究. 岩土力学. 2022(S1): 348-356 . 百度学术
8. 刘晓磊,陈安铎,张红,陆杨,马路宽,贾永刚. 黄河水下三角洲高浓度黏性泥沙流变特性及其影响因素. 海洋学报. 2021(05): 127-134 . 百度学术
9. 程升,朱超祁,单红仙,刘晓磊,贾永刚. 基于离散元的南海软黏土剪切变形模拟. 科学技术与工程. 2020(09): 3707-3714 . 百度学术
其他类型引用(10)