Experimental study on interaction mechanism between slope soil and pile- supported wharf subjected to yard loads
-
摘要: 码头后方堆场堆载会导致倾斜岸坡场地的侧向位移,对码头基础设施安全构成挑战。以天津港典型高桩码头为背景,基于大型土工离心试验平台,探究了堆场荷载作用下岸坡场地的变形特性、码头位移和内力的分布规律。试验结果表明:堆场荷载会导致岸坡出现显著的水平位移,其主要位于后承台下方区域,且随着距堆场距离的增加而逐步趋近于零;码头后承台随堆场荷载的增加会产生显著的向海侧水平位移,由此导致码头前后承台间距缩小进而增加碰撞风险;后承台桩基在岸坡土体水平变形作用下其弯矩响应由桩顶至底部呈S型分布模式;前承台桩基弯矩响应要显著低于后承台,其峰值小于后承台桩基弯矩响应的50%。研究结论可为高桩码头的破坏机制提供借鉴。Abstract: The back yard loads of a wharf can cause lateral displacements at sloping shoreline sites, posing a challenge to the safety of the infrastructures. With the engineering prototype of a typical pile-supported wharf in Tianjin Port area and based on a large-scale geotechnical centrifugal platform, the deformation characteristics of the shoreline site, the displacement and internal force of the wharf under the action of yard loads are investigated. The results show that the yard loads cause significant horizontal displacements of the slope soil. The horizontal displacement of the soil occurs mainly in the area below the rear platform, which converges to zero as the distance from the yard increases. With the increasing yard loads, significant seaward horizontal displacements of the rear platform are produced, resulting in a reduction in the distance between the front and rear platforms, which in turn increases the risk of collision. The pile foundation at the rear platform is subjected to the horizontal deformation of the slope soil, and the bending moment from the top to the bottom of the pile is distributed in an S-shaped pattern. The bending moment of the pile in the front platform is significantly lower than that of the pile in the rear platform, with the peak value being less than 50%. The findings of this study can provide reference for the damage mechanism of the pile-supported wharf.
-
-
表 1 离心试验物理量相似比尺设计
Table 1 Similarity laws adopted for physical quantities of centrifugal tests
物理量 相似比(模型/原型) 物理量 相似比(模型/原型) 加速度 N 质量 1/N3 长度 1/N 应力 1 面积 1/N2 应变 1 体积 1/N3 弯矩 1/N3 密度 1 抗弯刚度 1/N4 -
[1] 魏汝龙, 王年香, 杨守华. 桩基码头与岸坡的相互作用[J]. 岩土工程学报, 1992, 14(6): 38-49. http://cge.nhri.cn/cn/article/id/9626 WEI Rulong, WANG Nianxiang, YANG Shouhua. Interation between pile-supported pier and bank slope[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6): 38-49. (in Chinese) http://cge.nhri.cn/cn/article/id/9626
[2] 廖雄华, 张克绪. 天津港高桩码头桩基—岸坡土体相互作用的数值分析[J]. 水利学报, 2002, 33(4): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200204015.htm LIAO Xionghua, ZHANG Kexu. Numerical analysis of pile-soil interaction in long-piled wharf of Tianjin Port[J]. Journal of Hydraulic Engineering, 2002, 33(4): 81-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200204015.htm
[3] 刘现鹏, 韩阳, 刘红彪. 土体蠕变作用下高桩码头变形分析方法研究[J]. 水道港口, 2016, 37(4): 432-438. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201604027.htm LIU Xianpeng, HAN Yang, LIU Hongbiao. Research on analysis methods for deformation of high⁃pile wharf under effect of soil creeping[J]. Journal of Waterway and Harbor, 2016, 37(4): 432-438. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201604027.htm
[4] 徐光明, 王年香, 顾行文, 等. 模型箱约束对大变形破坏离心模型试验影响初探[J]. 岩土工程学报, 2023, 45(2): 232-242. doi: 10.11779/CJGE20220442 XU Guangming, WANG Nianxiang, GU Xingwen, et al. Preliminary study on influences of model container constraint on large-deformation failure behaviors by centrifuge modeling[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 232-242. (in Chinese) doi: 10.11779/CJGE20220442
[5] 包承纲. 我国岩土离心模拟技术的应用与发展[J]. 长江科学院院报, 2013, 30(11): 55-66, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201311013.htm BAO Chenggang. Application and development of centrifugal modeling technology for geotechnical engineering in China[J]. Journal of Changjiang River Scientific Research Institute, 2013, 30(11): 55-66, 71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201311013.htm