• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

海上风电大直径超长钢管桩竖向承载特性现场试验研究

韩冉冉, 乔小利, 李明玉

韩冉冉, 乔小利, 李明玉. 海上风电大直径超长钢管桩竖向承载特性现场试验研究[J]. 岩土工程学报, 2024, 46(S1): 180-185. DOI: 10.11779/CJGE2024S10026
引用本文: 韩冉冉, 乔小利, 李明玉. 海上风电大直径超长钢管桩竖向承载特性现场试验研究[J]. 岩土工程学报, 2024, 46(S1): 180-185. DOI: 10.11779/CJGE2024S10026
HAN Ranran, QIAO Xiaoli, LI Mingyu. Field tests on vertical bearing characteristics of large-diameter extra-long steel pipe piles in offshore wind power projects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 180-185. DOI: 10.11779/CJGE2024S10026
Citation: HAN Ranran, QIAO Xiaoli, LI Mingyu. Field tests on vertical bearing characteristics of large-diameter extra-long steel pipe piles in offshore wind power projects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 180-185. DOI: 10.11779/CJGE2024S10026

海上风电大直径超长钢管桩竖向承载特性现场试验研究  English Version

详细信息
    作者简介:

    韩冉冉(1982—),男,山东淄博人,硕士,高级工程师,主要从事软基处理及港口工程等方面的检测与研究工作。E-mail: nuanxn7758@sina.com

    通讯作者:

    乔小利,E-mail: qiaoxiaoli9615@126.com

  • 中图分类号: TU472

Field tests on vertical bearing characteristics of large-diameter extra-long steel pipe piles in offshore wind power projects

  • 摘要: 钢管桩是海上风电工程最主要的基础型式,但针对海上大直径超长钢管桩竖向承载力问题的研究却相对较少。结合广东汕头海上风电工程,进行了海上大直径超长钢管桩竖向承载力特性的现场试验研究,对比了桩底沉降和桩顶沉降随上部荷载的变化特点,分析了桩身侧摩阻力和桩端阻力随上部荷载的变化规律,并依据试验结果对大直径超长钢管桩极限承载力判定方法进行了探讨。试验结果表明:大直径超长钢管桩桩身变形较大,利用桩底沉降随荷载的变化曲线更容易对现场加载量进行控制和调整,也更容易对承载力的极限状态进行判断;大直径超长钢管桩端阻力随桩顶荷载的变化曲线呈“S”形;现行规范中采用Q/Qmax-s/d曲线斜率开始转变为0.2的点所对应的荷载作为极限承载力,将过高的估计大直径超长钢管桩的竖向抗压极限承载力。
    Abstract: The steel pipe piles are the main foundation type for offshore wind power projects, but there are relatively few researches on the vertical bearing capacity of large-diameter ultra-long steel pipe piles in the sea. The field tests are conducted on the vertical bearing capacity characteristics of the large-diameter ultra-long steel pipe piles based on their application in an offshore wind power project in Shantou City of China. The variation rules of side shaft friction and tip resistance with pile load are analyzed, and the variation characteristics of tip settlement and top settlement of the pipe piles are compared. Additionally, based on the on-site test results, the method for determining the bearing capacity of the large-diameter ultra-long steel pipe piles is explored. The tests results indicate that there is a significant pile deformation. It was easier to control and adjust the on-site loading amount by using the curve of tip settlement versus load, and it is also easier to judge the ultimate state of bearing capacity. The curve of tip resistance versus pile load shows an "S" shape. In the current code, the load corresponding to the point at which the slope of Q/Qmax~s/d curve begins to change to 0.2 is used as the ultimate bearing capacity to overestimate the vertical compressive ultimate bearing capacity of the large-diameter ultra-long steel pipe piles.
  • 图  1   桩位布置示意图

    Figure  1.   Sketch of pile position

    图  2   静载试验仪器布设及现场安装

    Figure  2.   Layout and installation process of instruments

    图  3   试桩Q-sQ/Qmax-s/d曲线

    Figure  3.   Q-s curves and Q/Qmax-s/d curves of pile tests

    图  4   不同深度桩身变形随桩顶荷载变化曲线

    Figure  4.   Curves of pile deformation versus load at different depths

    图  5   不同深度桩身轴力随桩顶荷载变化曲线

    Figure  5.   Curves of axial force versus load at different depths

    图  6   不同深度桩侧摩阻力随桩顶荷载变化曲线

    Figure  6.   Curves of side shaft friction versus load at different depths

    图  7   Q-QbQ-Qb/Q曲线

    Figure  7.   Q-Qb curve and Q-Qb/Q curve of pile tests

    表  1   各桩型类型、规格及主要参数

    Table  1   Types, specifications and main parameters of various piles

    桩名 桩型 桩径/mm 设计桩长/m 壁厚/mm 桩基类型 桩数
    试桩(中心桩) 钢管桩 Φ2400 113.0 30~50 直桩 1
    锚桩(角桩) 钢管桩 Φ2400 104.0 25 直桩 4
    基准桩 钢管桩 Φ1500 80.0 20 直桩 2
    下载: 导出CSV

    表  2   土层物理力学性质指标

    Table  2   Physical and mechanical property indexes of soils

    土层 地层标号 层厚/m 含水率/% 重度/(kN·m-3) 孔隙比 压缩模量/MPa 黏聚力/kPa 内摩擦角/(°) 桩侧极限摩阻力标准值/kPa 桩端极限端阻力标准值/kPa
    淤泥 1 0.6 53.7 2.75 1.554 1.316 5.6 2.3 2
    粉质黏土 1 9.5 34.6 2.72 0.947 4.348 38.7 4.6 47
    粉质黏土 2 18.0 31.0 2.72 0.856 5.645 36.7 8.0 34
    细砂 3 2.0 22.8 2.67 1.0 33.0 31
    中砂 4 4.9 19.3 2.65 0.0 34.5 70
    砾砂 10.5 108 7800
    粉质黏土 2 13.4 28.5 2.72 0.783 7.687 46.7 13.9 68 2200
    粗砾砂 3 1.5 95 8000
    中砂 1 12.6 18.1 2.65 1.0 36.0 124 8550
    细砂 2 12.3 20.6 2.66 2.0 34.5 92 4590
    下载: 导出CSV

    表  3   桩侧极限摩阻力测试结果对比

    Table  3   Test results of limit friction resistance at pile side

    土层 地层标号 层厚/m 桩侧极限摩阻力标准值/kPa
    静力触探测试 静载试验
    淤泥 1 0.6 2 3.7
    粉质黏土 1 9.5 47 76.5
    粉质黏土 2 18.0 34 50.1
    细砂 3 2.0 31 67.3
    中砂 4 4.9 70 94.7
    砾砂 10.5 108 136.4
    粉质黏土 2 13.4 68 86.4
    粗砾砂 3 1.5 95 119.8
    中砂 1 12.6 124 144.5
    细砂 2 12.3 92 139.9
    下载: 导出CSV
  • [1] 彭文韬. 超长大直径钢管桩竖向承载特性试验分析与预测方法研究[D]. 武汉: 武汉理工大学, 2010.

    PENG Wentao. Study on Testing Analysis and Prediction Methods for Bearing Properties of Super-long and Large-diameter Steel Pipe Piles under Vertical Load[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese)

    [2] 沈锦宁, 钱龙, 石锐龙, 等. 海上风电大直径钢管桩溜桩承载力计算方法研究[J]. 岩土工程学报, 2023, 45(增刊1): 158-161. doi: 10.11779/CJGE2023S10055

    SHEN Jinning QIAN Long SHI Ruilong, et al. Prediction for pile running of large-diameter steel pipes pile for offshore wind power[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 158-161. (in Chinese) doi: 10.11779/CJGE2023S10055

    [3] 张明远, 黎生南, 彭文韬, 等. 基于FLAC3D的超长大直径钢管桩竖向承载特性模拟[J]. 岩土力学, 2011, 32(9): 2856-2860. doi: 10.3969/j.issn.1000-7598.2011.09.049

    ZHANG Mingyuan, LI Shengnan, PENG Wentao, et al. Simulation of vertical bearing features for large-diameter and super-long steel pipe pile based on FLAC3D[J]. Rock and Soil Mechanics, 2011, 32(9): 2856-2860. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.09.049

    [4] 刘润, 韩德卿, 梁超, 等. 砂土中超大直径钢管桩内侧摩阻力研究[J]. 岩土工程学报, 2020, 42(6): 1067-1075. doi: 10.11779/CJGE202006010

    LIU Run, HAN Deqing, LIANG Chao, et al. Inner frictional resistance of super-large-diameter steel pipe piles in sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1067-1075. (in Chinese) doi: 10.11779/CJGE202006010

    [5] 刘润, 尹瑞龙, 梁超, 等. 黏土中超大直径钢管桩内侧摩阻力研究[J]. 岩土力学, 2023, 44(1): 232-240, 250. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202301016.htm

    LIU Run, YIN Ruilong, LIANG Chao, et al. Inner frictional resistance of super-large diameter steel pipe pile in clay[J]. Rock and Soil Mechanics, 2023, 44(1): 232-240, 250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202301016.htm

    [6] 徐彬, 易神州, 张昆, 等. 基于API规范的海上大直径钢管桩静压载试验分析[J]. 中国海洋大学学报(自然科学版), 2017, 47(10): 134-140. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201710019.htm

    XU Bin, YI Shenzhou, ZHANG Kun, et al. Field test research on horizontal bearing performance of offshore large diameter steel pipe pile based on API criterion[J]. Periodical of Ocean University of China, 2017, 47(10): 134-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201710019.htm

    [7] 胡利文, 娄学谦, 周密, 等. 海上风电钢管桩自平衡法现场试验研究[J]. 海洋工程, 2023, 41(1): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202301014.htm

    HU Liwen, LOU Xueqian, ZHOU Mi, et al. Static load study on in-situ steel pipe pile for offshore wind farm using self-balancing method[J]. The Ocean Engineering, 2023, 41(1): 141-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202301014.htm

    [8] 水运工程桩基试验检测技术规范: JTS 240—2020[S]. 北京: 人民交通出版社, 2020.

    Technical Code for Testing and Inspection of Waterway Engineering Foundation Piles: JTS 240—2020[S]. Beijing: China Communication Press, 2020. (in Chinese)

  • 期刊类型引用(8)

    1. 杨旭辉,柏谦,贾鹏蛟. 地铁车站小直径管幕-横梁支护参数优化分析. 沈阳工业大学学报. 2025(01): 114-123 . 百度学术
    2. 邱建,赵文,路博,孙旭. 新型管幕工法修建地铁车站地层变形特性及参数优化. 东北大学学报(自然科学版). 2024(11): 1645-1655 . 百度学术
    3. 崔光耀,宋博涵,何继华,田宇航. 超近接上跨既有隧道施工影响分区及加固措施效果. 长江科学院院报. 2023(06): 114-118+125 . 百度学术
    4. 伍凯,毕延哲,杨鑫,储修琼. 超浅覆土小净距上跨运营线路盾构掘进超前管幕支护模拟分析. 路基工程. 2023(04): 130-136 . 百度学术
    5. 陈凯. 基于变形控制的密排管幕顶管施工顺序优化分析. 铁道勘察. 2023(05): 149-157 . 百度学术
    6. 王子君,赵文,程诚,柏谦. 地铁车站小直径管幕工法开挖变形规律. 东北大学学报(自然科学版). 2022(11): 1630-1637 . 百度学术
    7. 袁庆利. 大直径密排管幕的力学分析及在地铁车站中的应用. 吉林水利. 2021(06): 1-10 . 百度学术
    8. 张贺. 新型钢管幕力学变形特征及其在地铁车站中的应用. 工程建设. 2021(09): 1-6 . 百度学术

    其他类型引用(3)

图(7)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 11
出版历程
  • 收稿日期:  2024-04-28
  • 刊出日期:  2024-07-31

目录

    /

    返回文章
    返回