• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

季冻区水平和立体加筋土体防冻胀融沉效果研究

孙若晗, 刘润, 王晓磊, 张欢

孙若晗, 刘润, 王晓磊, 张欢. 季冻区水平和立体加筋土体防冻胀融沉效果研究[J]. 岩土工程学报, 2024, 46(S1): 16-21. DOI: 10.11779/CJGE2024S10025
引用本文: 孙若晗, 刘润, 王晓磊, 张欢. 季冻区水平和立体加筋土体防冻胀融沉效果研究[J]. 岩土工程学报, 2024, 46(S1): 16-21. DOI: 10.11779/CJGE2024S10025
SUN Ruohan, LIU Run, WANG Xiaolei, ZHANG Huan. Effects of horizontal and three-dimensional reinforcement on frost-heaving and thawing-settlement in seasonally frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 16-21. DOI: 10.11779/CJGE2024S10025
Citation: SUN Ruohan, LIU Run, WANG Xiaolei, ZHANG Huan. Effects of horizontal and three-dimensional reinforcement on frost-heaving and thawing-settlement in seasonally frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 16-21. DOI: 10.11779/CJGE2024S10025

季冻区水平和立体加筋土体防冻胀融沉效果研究  English Version

详细信息
    作者简介:

    孙若晗(1990—),女,讲师,主要从事土-结构相互作用方面试验和数值模拟研究。E-mail: sunruohan@tju.eedu.cn

    通讯作者:

    刘润,E-mail: liurun@tju.edu.cn

  • 中图分类号: TU433

Effects of horizontal and three-dimensional reinforcement on frost-heaving and thawing-settlement in seasonally frozen soils

  • 摘要: 冻胀融沉是季节性冻土区建筑物破坏的主要原因,实际应用表明,土工合成材料加筋路基具有良好的抗冻融循环损伤能力,然而不同加筋形式的有益影响尚未被量化。针对四川阿坝地区典型季节性冻土,开展了水平及立体加筋土冻融循环试验及平板载荷试验,研究了冻融循环对加筋土和未加筋土力学性能的影响,对比了水平加筋及立体加筋土的防冻胀融沉效果。研究发现:水平加筋和立体加筋均可一定程度上抑制土体的冻胀融沉,提高冻融循环后土体的承载力,抑制冻融循环的弱化作用。立体加筋加固效果优于水平加筋。经过5次冻融循环后,水平加筋使冻胀隆起和融化沉降分别减少5%,6%,立体加筋使冻胀隆起和融化沉降分别减少4%,17%;水平加筋对冻融循环土体的承载力和刚度分别提高75%,29%,立体加筋对冻融循环土体的承载力和刚度分别提高388%,40%。
    Abstract: The frost heaving and thaw-induced settlement is the primary causes of structural damage in the areas with seasonally frozen soils. Practical applications have demonstrated that the roadbeds reinforced with geosynthetic materials exhibit excellent resistance to cyclic frost-thaw damage. However, the beneficial effects of various forms of reinforcement have not been quantified. To address this gap, the freeze-thaw cycle tests and plate-load tests are conducted on soil samples, horizontally or three-dimensionally reinforced, collected from a representative seasonal frozen soil site in the Aba area, Sichuan Province. The effects of freeze-thaw cycle on the mechanical properties of the reinforced soil are compared to those of unreinforced soil. Additionally, a comparative analysis of the mitigation effects of frost-heaving, thawing-settlement and bearing capacity is performed between the horizontally and three-dimensionally reinforced soils. The study reveals that the frost-heaving and thawing-settlement in the soils can be effectively mitigated by both the horizontal and three-dimensional reinforcements. Moreover, these reinforcement methods enhance the post-freeze-thaw bearing capacity of the soils and counteract the weakening effects of freeze-thaw cycles. Notably, the three-dimensional reinforcement demonstrates a superior reinforcing effect in comparison to the horizontal reinforcement. Following five freeze-thaw cycles, the horizontal reinforcement results in a 5% reduction in the frost-heave and a 6% reduction in the thaw-induced settlement, while the three-dimensional reinforcement yields a 4% reduction in the frost heave and a 17% reduction in the thaw-induced settlement. The horizontal reinforcement enhances the bearing capacity and stiffness of freeze-thaw cyclic soil by 75% and 29%, respectively. In contrast, the three-dimensional reinforcement significantly improves the bearing capacity and stiffness of the freeze-thaw cyclic soils by 388% and 40%, respectively.
  • 图  1   试验装置示意图

    Figure  1.   Schematic of test devices

    图  2   土工格栅及土工格室示意图

    Figure  2.   Schematic of geogrid and geocell

    图  3   土工格栅/格室加筋地基示意图

    Figure  3.   Schematic diagram of geogrid/geocell reinforced foundation

    图  4   冻融循环过程中土体的热电偶布置示意图

    Figure  4.   Layout of thermocouple in clay sands during freeze-thaw cycle

    图  5   一次冻融循环过程中土工格栅/格室加筋土与未加筋土温度随时间的变化曲线

    Figure  5.   Temperature evolution of geogrid/geocell-reinforced soil and unreinforced soil with time during one freeze-thaw cycle

    图  6   一次冻融循环过程中的冻胀演化曲线

    Figure  6.   Frost-heave under one freeze-thaw cycle

    图  7   每次冻融循环后非加筋土和加筋工况下土体的冻胀

    Figure  7.   Frost-heave of unreinforced and reinforced sands after each F-T cycle

    图  8   不同冻融循环次数加固及未加固地基荷载-沉降曲线

    Figure  8.   Load-settlement curves of reinforced and unreinforced clay sands with different freeze-thaw cycles

    表  1   模型试验组别

    Table  1   Details of model tests

    试验编号 试验材料 冻融循环次数 温度监测 冻胀监测 平板加载试验
    GR-1 未加筋土体 0
    GR-2 1
    GR-3 5
    GR-4 土工格栅水平加筋土体 0
    GR-5 1
    GR-6 5
    GC-7 土工格室立体加筋土体 0
    GC-8 1
    GC-9 5
    下载: 导出CSV
  • [1] 孙静, 公茂盛, 熊宏强, 等. 冻融循环对粉砂土动力特性影响的试验研究[J]. 岩土力学, 2020, 41(3): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003004.htm

    SUN Jing, GONG Maosheng, XIONG Hongqiang, et al. Experimental study of the effect of freeze-thaw cycles on dynamic characteristics of silty sand[J]. Rock and Soil Mechanics, 2020, 41(3): 747-754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003004.htm

    [2]

    JIE H, YAN J. Use of geosynthetics for performance enhancement of earth structures in cold regions[J]. Sciences in Cold and Arid Regions, 2013, 5(5): 517. doi: 10.3724/SP.J.1226.2013.00517

    [3]

    ZHAO R F, ZHANG S N, GAO W, et al. Factors effecting the freeze thaw process in soils and reduction in damage due to frosting with reinforcement: a review[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(7): 5001-5010. doi: 10.1007/s10064-018-1430-3

    [4]

    SAVAGE B M. Use of geogrids for limiting longitudinal cracking in roads on permafrost[R]. Alaska: State of Alaska, Department of Transportation and Public Facilities, 1991.

    [5] 苏艺, 许兆义, 王连俊. 青藏高原多年冻土区铁路加筋路堤的变形特征研究[J]. 岩土工程学报, 2004, 26(1): 115-119. http://cge.nhri.cn/cn/article/id/11349

    SU Yi, XU Zhaoyi, WANG Lianjun. Study on deformation characters of reinforced embankment in permafrost regions of Qinghai-Tibet Railway[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 115-119. (in Chinese) http://cge.nhri.cn/cn/article/id/11349

    [6] 陈榕, 王喜强, 郝冬雪, 等. 季节性冻土中土工格栅加筋特性试验研究[J]. 岩土工程学报, 2019, 41(6): 1101-1107. doi: 10.11779/CJGE201906014

    CHEN Rong, WANG Xiqiang, HAO Dongxue, et al. Experimental investigation on reinforced characteristics of geogrids in seasonal frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1101-1107. (in Chinese) doi: 10.11779/CJGE201906014

    [7]

    HENRY K, OLSON J P, FARRINGTON S, et al. Improved performance of unpaved roads during spring thaw[R]. Vicksburg: US Army Corps of Engineers, Engineer Research and Development Center. 2005.

    [8]

    POKHAREL S K, MARTIN I, NOROUZI M, et al. Validation of geocell design for unpaved roads[C]//Proceedings of Geosynthetics 2015, Oregon, 2015.

    [9]

    HUANG M, LIN C, POKHAREL S K, TURA A, et al. Model tests of freeze-thaw behavior of geocell-reinforced soils[J]. Geotextiles and Geomembranes, 2021, 49: 669-687.

    [10]

    CHEN J F, GUO X P, SUN R, et al. Physical and numerical modelling of strip footing on geogrid reinforced transparent sand[J]. Geotextiles and Geomembranes, 2021, 49(2): 399-412. doi: 10.1016/j.geotexmem.2020.10.011

图(8)  /  表(1)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  18
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 刊出日期:  2024-07-31

目录

    /

    返回文章
    返回