Model tests on soil deformation of surrounding soil of Luochuan tunnel
-
摘要: 以洛川隧道DK194+835为研究断面,开展不同埋深下隧道模型试验研究。通过各种试验确定原型、相似材料土和衬砌的参数,利用3D打印技术研制出一套新型衬砌材料及连接方式较好的模拟了实际工程中喷射混凝土、钢架、超前小导管。利用自制多点位移计等各种监测原件采集开挖过程中围岩内部变形及地表沉降数据。试验表明:可通过拼装的方式在模型试验中模拟隧道的分布支护,可使用滑动式连接件链接相邻位置的石膏块;不同测点竖向位移均经历缓慢增长(开挖面远离监测断面)、迅速增长(开挖面接近监测断面)、逐步稳定(开挖面经过监测断面)3个阶段。随埋深增加,监测断面前期变形(开挖面远离、接近监测断面)占比减小;地表沉降经历缓慢增长、迅速增长、逐步稳定3个阶段。随埋深增加,监测断面前期地表沉降占比减小。Abstract: Based on the cross-section DK194+835 of Luochuan tunnel, model tests are conducted under different burial depths. The study involves to determine the parameters of the prototype, similar soil and lining through various experiments. Additionally, a set of new lining materials and connection methods are developed using the 3D printing technology to better simulate the shotcrete, steel frame and advanced small ducts in tunnel engineering. Various monitoring components, including self-made multi-point displacement meters, are used to collect data on the internal deformation of the surrounding rock and the surface settlement during excavation process. The test results demonstrate that the distributed support of the tunnel can be effectively simulated in the model tests through assembly, and sliding connectors can be used to link adjacent gypsum blocks. The vertical displacements at different measuring points exhibit a pattern of slow growth when the excavation surface is far from the monitoring section, the rapid growth as the excavation surface approaches the monitoring section, and the gradual stabilization after the excavation surface passes through the monitoring section. Furthermore, it is found that as the burial depth increases, the proportion of early deformation of the monitored section (i.e., the excavation surface moving away from and approaching the monitored section) decreases. The surface subsidence also undergoes three stages: slow growth, rapid growth, and gradual stabilization. Similarly, with the increasing burial depth, the proportion of early surface settlement of the monitored section decreases.
-
Keywords:
- loess tunnel /
- model test /
- surrounding rock /
- deformation /
- surface settlement /
- effect of buried depth
-
-
表 1 相似材料质量配比
Table 1 Mass ratios of similar materials
材料 石英砂 重晶石粉 滑石粉 液压油 规格 70~110目 325目 1250目 #32(黏度) 质量比 8 4 3 0.15 表 2 原型土及相似材料的物理力学参数
Table 2 Physical and mechanical parameters of prototype soil and similar materials
参数 试验类型 原型土 相似材料理论参数 相似材料实际参数 ρ/(g·cm-3) 密度试验 1.65 1.65 1.64 c/kPa 直剪试验 47.50 1.20 1.32 φ/(°) 直剪试验 27.50 27.50 28.40 Es/MPa 固结试验 24.00 0.60 0.62 表 3 原型喷射混凝土及相似材料物理力学参数
Table 3 Physical and mechanical parameters of prototype shotcrete and similar materials
参数 原型参数 相似材料理论参数 相似材料实际参数 抗压强度/MPa 16.7 0.42 0.40 弹性模量/GPa 28.0 0.70 0.68 泊松比 0.3 0.30 0.31 表 4 土体内部位移测点间距
Table 4 Distances between measurement points for internal displacement of soil
埋深/m d1/cm d2/cm d3/cm d4/cm 0.4 5 12 10 13 0.8 5 22 20 33 1.2 5 22 50 43 -
[1] MANDAL S K, SINGH M M. Evaluating extent and causes of overbreak in tunnels[J]. Tunnelling and Underground Space Technology, 2009, 24(1): 22-36. doi: 10.1016/j.tust.2008.01.007
[2] 李尧, 董星, 陈厚先, 等. 活动门试验中土体变形及破坏规律[J]. 山东大学学报(工学版), 2023, 53(5): 92-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY202305011.htm LI Yao, DONG Xing, CHEN Houxian, et al. The soil deformation and failure features in trapdoor tests[J]. Journal of Shandong University (Engineering Science), 2023, 53(5): 92-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY202305011.htm
[3] 田志宇, 林国进, 杨枫, 等. 隧道不同支护体系的支护效果模型试验研究[J]. 现代隧道技术, 2018, 55(2): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201802020.htm TIAN Zhiyu, LIN Guojin, YANG Feng, et al. Experimental test of support effect of different tunnel support systems[J]. Modern Tunnelling Technology, 2018, 55(2): 134-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201802020.htm
[4] 方勇, 符亚鹏, 周超月, 等. 公路隧道下穿双层采空区开挖过程模型试验[J]. 岩石力学与工程学报, 2014, 33(11): 2247-2257. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201411009.htm FANG Yong, FU Yapeng, ZHOU Chaoyue, et al. Model test of highway tunnel construction under double-deck mined-out area[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2247-2257. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201411009.htm
[5] XU Z L, CHEN J X, LUO Y B, et al. Geomechanical model test for mechanical properties and cracking features of Large-section tunnel lining under periodic temperature[J]. Tunnelling and Underground Space Technology, 2022, 123: 104319. doi: 10.1016/j.tust.2021.104319
-
期刊类型引用(8)
1. 杨旭辉,柏谦,贾鹏蛟. 地铁车站小直径管幕-横梁支护参数优化分析. 沈阳工业大学学报. 2025(01): 114-123 . 百度学术
2. 邱建,赵文,路博,孙旭. 新型管幕工法修建地铁车站地层变形特性及参数优化. 东北大学学报(自然科学版). 2024(11): 1645-1655 . 百度学术
3. 崔光耀,宋博涵,何继华,田宇航. 超近接上跨既有隧道施工影响分区及加固措施效果. 长江科学院院报. 2023(06): 114-118+125 . 百度学术
4. 伍凯,毕延哲,杨鑫,储修琼. 超浅覆土小净距上跨运营线路盾构掘进超前管幕支护模拟分析. 路基工程. 2023(04): 130-136 . 百度学术
5. 陈凯. 基于变形控制的密排管幕顶管施工顺序优化分析. 铁道勘察. 2023(05): 149-157 . 百度学术
6. 王子君,赵文,程诚,柏谦. 地铁车站小直径管幕工法开挖变形规律. 东北大学学报(自然科学版). 2022(11): 1630-1637 . 百度学术
7. 袁庆利. 大直径密排管幕的力学分析及在地铁车站中的应用. 吉林水利. 2021(06): 1-10 . 百度学术
8. 张贺. 新型钢管幕力学变形特征及其在地铁车站中的应用. 工程建设. 2021(09): 1-6 . 百度学术
其他类型引用(3)