Model tests and bearing characteristics of composite lining of tunnel
-
摘要: 中国山岭隧道常采用复合式衬砌支护,探究复合式衬砌的承载特性对矿山法隧道支护设计具有重要意义。设计了大型隧道结构模型试验系统,开展了毛洞、喷锚组合支护和复合式衬砌支护的大尺寸隧道模型试验,通过监测隧道破坏全过程,分析不同支护形式下隧道的破坏模式和支护结构受力特征,揭示了复合式衬砌的承载特性。结果表明:复合式衬砌支护较喷锚组合支护相比设计承载力提高了33.3%;两种支护形式下,围岩可承受约60%~75%的外荷载,施加二次衬砌后,二次衬砌可分担约15%~80%的围岩压力;喷锚组合支护较复合式衬砌相比能更好的发挥锚杆的效果。Abstract: The mountain tunnels in China often use composite lining support. To explore the bearing characteristics of the composite lining to guide the design of the mining method tunnel is of great significance. A large tunnel structural model test system is designed to carry out large-size model tests on the unsurported, spray-anchor combined support and composite lining support. The whole process of tunnel damage is monitored, and the damage modes of tunnels under different forms of support and the stress characteristics of the support structure are analyzed so as to reveal the bearing characteristics of composite lining. The results show that the composite lining support increases the design bearing capacity by 33.3% compared with the combined spray-anchor support. Under the two forms of support, the surrounding rock can withstand about 60% ~ 75% of the external load, and after its application, the secondary lining can share about 15% ~ 80% of the pressure of the surrounding rock. The combined spray-anchor support can better use the effects of anchors compared to the composite lining.
-
Keywords:
- composite lining /
- model test /
- bearing characteristic /
- load-sharing ratio
-
-
表 1 试验方案
Table 1 Test programs
序号 工况 工况一 毛洞 工况二 喷锚组合支护(锚杆间距17.6 cm × 17.6 cm) 工况三 复合式衬砌(锚杆间距17.6 cm × 17.6 cm) 表 2 模型试验材料物理力学参数
Table 2 Physical and mechanical parameters of model test materials
类型 密度/(g·cm-3) 黏聚力/kPa 内摩擦角/(°) 弹性模量/GPa 单轴抗压强度/MPa 泊松比 围岩 2.23 46.0 38.20 1.39 0.186 0.36 喷层 2.30 396.8 32.96 5.09 1.430 0.29 细砂 1.75 0 38.74 — 0.079 0.30 表 3 各工况承载能力
Table 3 Bearing capacities under various working conditions
工况 设计承载能力/kPa 较毛洞提高值/kPa 极限承载能力/kPa 较毛洞提高值/kPa 工况一 130 — 170 — 工况二 310 180 450 280 工况三 370 240 490 320 -
[1] 肖明清. 复合式衬砌隧道的总安全系数设计方法探讨[J]. 铁道工程学报, 2018, 35(1): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201801014.htm XIAO Mingqing. Discussion on design method of general safety factor of composite lining tunnel[J]. Journal of Railway Engineering Society, 2018, 35(1): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201801014.htm
[2] 王建宇. 对隧道衬砌结构计算问题的思考[J]. 现代隧道技术, 2014, 51(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201402001.htm WANG Jianyu. On calculation of tunnel lining structure[J]. Modern Tunnelling Technology, 2014, 51(2): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201402001.htm
[3] 李荣锦, 邹鑫, 李荣建, 等. 半嵌泥岩半覆黄土隧道模型试验及承载特性评价[J]. 岩土工程学报, 2022, 44(增刊1): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2022S1018.htm LI Rongjin, ZOU Xin, LI Rongjian, et al. Model test and bearing characteristics evaluation of semi-embedded mudstone and semi-covered loess tunnel[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 98-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2022S1018.htm
[4] WANG S M, WANG Y, LIN Z Y, et al. Analysis of the influence of the thickness insufficiency in secondary lining on the mechanical properties of Double-layer lining of shield tunnel[J]. Engineering Failure Analysis, 2022, 141: 106663. doi: 10.1016/j.engfailanal.2022.106663
[5] 何灏典, 唐欣薇, 严振瑞, 等. 复合式衬砌结构联合承载的原位试验与数值分析[J]. 岩土工程学报, 2022, 44(3): 560-568. doi: 10.11779/CJGE202203018 HE Haodian, TANG Xinwei, YAN Zhenrui, et al. In-situ tests and numerical analysis of composite lining structures with joint bearing[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 560-568. (in Chinese) doi: 10.11779/CJGE202203018
[6] GUO X L, FAN X S, TAN Z S. Deformation control benchmarks and secondary lining construction timing in squeezing phyllite tunnels: a case study of Chengdu-Lanzhou Railway[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2024, 143: 105454.