Centrifugal model tests on combined bearing characteristics of DCM and gravel foundation
-
摘要: DCM联合碎石基床是处理跨海沉管隧道复杂地质条件的新型地基形式,在软土地区极具优势。依托深中通道沉管隧道工程,通过离心模型试验,研究了DCM联合碎石基床的承载特性和激振荷载对DCM桩身完整性的影响,研究结果表明:复合地基荷载-沉降曲线存在拐点,拐点前荷载和沉降呈线性关系,拐点后呈陡降型;碎石基床能够有效分散应力,提高地基的整体承载力;复合地基的极限承载力约是沉管底部最大荷载的1.5倍;当上部荷载超过地基极限承载力后,碎石会刺入DCM桩体内,引起桩头破碎,影响范围约为桩头以下3 m内;地基表面沉降较小,工后沉降占总沉降的15.5%,该新型地基形式能够有效控制沉降。Abstract: The combination of DCM and gravel foundation is a new type of foundation form for dealing with complex geological conditions of cross sea immersed tube tunnels, which has extremely advantageous in soft soil areas. Based on the immersed tunnel project of Shenzhong-Zhongshan Bridge, centrifugal model tests are conducted to study the bearing characteristics of the DCM combined gravel foundation and the influences of excitation loads on the integrity of the DCM piles. The research results show that there is a turning point in the load-settlement curve of the composite foundation and a linear relationship between the load and the settlement before the turning point, and a steep drop after the turning point. The gravel foundation can effectively disperse stress and improve the overall bearing capacity of the foundation. The ultimate bearing capacity of the composite foundation is about 1.5 times the maximum load at the bottom of the immersed tube. When the upper load exceeds the ultimate bearing capacity of the foundation, the gravel will penetrate into the DCM piles, causing the pile head to break, with an impact range of about 3 m below the pile head. The surface settlement of the foundation is relatively small, and the post-construction settlement accounts for 15.5% of the total settlement. This new type of foundation form can effectively control settlement.
-
Keywords:
- DCM /
- composite foundation /
- gravel foundationt /
- bearing characteristic
-
-
表 1 地基土层的主要物理力学性质
Table 1 Main physical and mechanical properties of soil layers
土层 厚度
/m含水率w/% 密度ρ/(g·cm-3) 孔隙比
e压缩模量Es/MPa 压缩系数av/MPa-1 内摩擦角φ/(°) 黏聚力c/kPa 弹性
模量E/MPa泊松比ν 碎石基床 0.8 2.00 1.000 17.55 40.0 0 14.63 0.25 淤泥 10.0 83.2 1.53 2.326 1.57 2.176 1.5 3.8 1.06 0.33 中砂 5.0 13.5 1.99 0.548 15.81 0.100 25.9 8.0 13.18 0.25 全风化花岗岩 6.5 16.3 1.96 0.652 18.00 0.097 27.4 18.5 15.00 0.25 -
[1] 何开胜. 水泥土搅拌桩设计计算方法探讨[J]. 岩土工程学报, 2003, 25(1): 31-35. http://cge.nhri.cn/cn/article/id/11116 HE Kaisheng. Study of design methods of deep cement-soil mixing piles[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 31-35. (in Chinese) http://cge.nhri.cn/cn/article/id/11116
[2] KLEIN A, POLIVKA M. Cement and clay grouting of foundations: the use of admixtures in cement grouts[J]. Journal of the Soil Mechanics and Foundations Division, 1958, 84(1): 1-2.
[3] BRUCE D A. Practitioner's guide to the deep mixing method[J]. Ground Improvement, 2001, 5(3): 95-100. doi: 10.1680/grim.2001.5.3.95
[4] 段继伟, 龚晓南, 曾国熙. 水泥搅拌桩的荷载传递规律[J]. 岩土工程学报, 1994, 16(4): 1-8. http://cge.nhri.cn/cn/article/id/9782 DUAN Jiwei, GONG Xiaonan, ZENG Guoxi. Load transfer law of cement mixing pile[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 1-8. (in Chinese) http://cge.nhri.cn/cn/article/id/9782
[5] 郭印, 徐日庆, 邵允铖. 淤泥质土的固化机理研究[J]. 浙江大学学报(工学版), 2008, 42(6): 1071-1075. doi: 10.3785/j.issn.1008-973X.2008.06.033 GUO Yin, XU Riqing, SHAO Yuncheng. Study on mechanism of muddy soil stabilization[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(6): 1071-1075. (in Chinese) doi: 10.3785/j.issn.1008-973X.2008.06.033
[6] 黄新, 宁建国, 郭晔, 等. 水泥含量对固化土结构形成的影响研究[J]. 岩土工程学报, 2006, 28(4): 436-441. http://cge.nhri.cn/cn/article/id/12002 HUANG Xin, NING Jianguo, GUO Ye, et al. Effect of cement content on the structural formation of stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 436-441. (in Chinese) http://cge.nhri.cn/cn/article/id/12002
[7] 徐超, 董天林, 叶观宝. 水泥土搅拌桩法在连云港海相软土地基中的应用[J]. 岩土力学, 2006, 27(3): 495-498. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200603035.htm XU Chao, DONG Tianlin, YE Guanbao. Application of cement deep mixing method in Lianyungang marine soft soil foundation[J]. Rock and Soil Mechanics, 2006, 27(3): 495-498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200603035.htm
[8] 郑刚, 姜忻良. 水泥搅拌桩复合地基承载力研究[J]. 岩土力学, 1999, 20(3): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199903008.htm ZHENG Gang, JIANG Xinliang. Research on the bearing capacity of cement treated composite foundation[J]. Rock and Soil Mechanics, 1999, 20(3): 46-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199903008.htm
[9] 郝玉龙, 王立忠, 陈云敏, 等. 深厚软土水泥搅拌桩复合地基沉降分析及控制[J]. 岩土工程学报, 2001, 23(3): 345-349. http://cge.nhri.cn/cn/article/id/10731 HAO Yulong, WANG Lizhong, CHEN Yunmin, et al. Analysis and control of the settlement in thick soft clay ground reinforced by deep mixing cement piles[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 345-349. (in Chinese) http://cge.nhri.cn/cn/article/id/10731
-
期刊类型引用(7)
1. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 . 百度学术
2. 许宇,李兴高,杨益,牟举文,苏伟林. 盾构切刀切削混凝土过程中的动态响应试验. 哈尔滨工业大学学报. 2021(05): 182-189 . 百度学术
3. 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟. 浙江大学学报(工学版). 2020(06): 1106-1114 . 百度学术
4. 魏世广,蒋敏敏,肖昭然,周长明. 竖向荷载作用下盾构开挖引起的桩身竖向响应分析. 三峡大学学报(自然科学版). 2020(06): 68-72 . 百度学术
5. 王渭,蒋云鹏. 不同条件下顶管法施工对下穿隧道的作用特性研究. 交通世界. 2019(15): 122-123 . 百度学术
6. 黄启舒,孟庆生. 公路隧道下穿既有桥梁的施工影响及工程措施研究. 公路与汽运. 2019(05): 144-146 . 百度学术
7. 郭力,李太杰. 城市桥梁桩基施工对既有盾构隧道的影响研究. 公路工程. 2019(05): 118-122+187 . 百度学术
其他类型引用(14)