• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于胞元模型的土体应变局部化试验与机理研究

侯世伟, 侯金招, 杜修力, 孟素云, 曲金红

侯世伟, 侯金招, 杜修力, 孟素云, 曲金红. 基于胞元模型的土体应变局部化试验与机理研究[J]. 岩土工程学报, 2024, 46(S1): 64-68. DOI: 10.11779/CJGE2024S10012
引用本文: 侯世伟, 侯金招, 杜修力, 孟素云, 曲金红. 基于胞元模型的土体应变局部化试验与机理研究[J]. 岩土工程学报, 2024, 46(S1): 64-68. DOI: 10.11779/CJGE2024S10012
HOU Shiwei, HOU Jinzhao, DU Xiuli, MENG Suyun, QU Jinhong. Strain localization tests of soils and mechanism based on cell model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 64-68. DOI: 10.11779/CJGE2024S10012
Citation: HOU Shiwei, HOU Jinzhao, DU Xiuli, MENG Suyun, QU Jinhong. Strain localization tests of soils and mechanism based on cell model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 64-68. DOI: 10.11779/CJGE2024S10012

基于胞元模型的土体应变局部化试验与机理研究  English Version

基金项目: 

国家自然科学基金项目 52208356

北京工业大学城市与工程安全减灾教育部重点实验室项目 2022B08

详细信息
    作者简介:

    侯世伟(1982—),女,博士,副教授,主要从事岩土防灾减灾等方面研究。E-mail: hsw1375@126.com

  • 中图分类号: TU411

Strain localization tests of soils and mechanism based on cell model

  • 摘要: 土体的碎散性和天然性使其变形和强度特性具有明显的尺度效应,所以研究土体应变局部化过程,不能忽略级配颗粒的分布和比例关系,须从多个尺度层面表征宏观力学特性。基于胞元模型理论,将土体视作由加强颗粒和基质组成的散体材料,通过三轴压缩试验研究不同加强颗粒粒径试样的内禀尺度规律,并通过数值模拟方法研究了细观层面剪切带的形成过程和启动机理;引入平均应变能释放系数,量化了土体在到达峰值应力之后试样整体的应变能转化情况,再现了多带的启动和渐进竞争过程。结果表明:不同尺度的加强颗粒强度试验说明颗粒的非连续性使土体具有尺寸效应,内禀尺度与粒径之比随加强颗粒尺度增大而减小。在应力峰值前非弹性耗散能增加,引发应变局部化;峰值后,剪切带内应变急速增大,带外发生回弹。
    Abstract: The fragmentation and naturalness of soils make their deformation and strength characteristics have obvious scale effects. Therefore, in order to study the strain localization process of the soils, the distribution and proportional relationship of graded particles cannot be ignored, and the macroscopic mechanical properties must be characterized from multiple scales. Based on the theory of cell model, the soils are regarded as a granular material composed of reinforced particles and matrix. The intrinsic scale law of the samples with different reinforced particle sizes is studied through the triaxial compression tests, and the formation process and initiation mechanism of shear band at meso level are studied through the numerical simulation. The average strain energy release coefficient is introduced to quantitatively verify the strain energy conversion of the soils after reaching the peak stress, and the multi-band initiation and progressive competition process are reproduced. The results show that the strength tests of reinforced particles with different size scales indicate that the discontinuity of particles makes the soils have size effects, and the ratio of intrinsic scale to particle size decreases with the increase of the reinforced particle size. Before the stress peak, the non-elastic dissipative energy increases, leading to strain localization. After the peak, the strain rapidly increases within the shear band, while there is a rebound outside the band.
  • 图  1   数值模拟与试验竖向应力-竖向应变曲线对比

    Figure  1.   Comparison of vertical stress-vertical strain curves between numerical simulations and tests

    图  2   试样破坏模式

    Figure  2.   Damage modes of samples

    图  3   能量与占比曲线

    Figure  3.   Curves of energy and percentage

    图  4   计算结果与试验结果对比

    Figure  4.   Comparison between calculated and test results

    表  1   内禀尺度计算及参数

    Table  1   Intrinsic scale calculation and parameters

    围压/kPa 加强粒径/mm 基体强度/MPa 屈服强度/MPa 内禀尺度/mm 内禀尺度与粒径比
    100 0.1~0.2 1.54 4.58 16.81 84.05
    0.4~0.8 2.73 18.36 22.95
    1.0~2.0 2.35 28.45 14.23
    2.0~4.0 2.18 43.08 10.77
    5.0~10 1.88 52.20 5.20
    500 0.1~0.2 2.18 6.08 14.52 72.60
    0.4~0.8 4.24 23.84 29.80
    1.0~2.0 3.88 46.42 23.21
    2.0~4.0 3.21 50.36 12.59
    5.0~10 3.21 125.61 12.50
    1000 0.1~0.2 2.91 6.81 9.59 6.99
    0.4~0.8 4.82 14.94 18.68
    1.0~2.0 4.78 36.36 18.18
    2.0~4.0 4.72 69.99 17.49
    5.0~10 4.68 170.59 17.10
    下载: 导出CSV
  • [1] 加瑞, 李逸群, 雷华阳, 等. 基于三轴不排水有效应力路径的结构性剑桥模型的修正研究[J]. 岩土工程学报(录用待发). DOI: 10.11779/CJGE20231243.

    JIA Rui, LI Yiqun, LEI Huayang, et al. Revision of structural cambridge model based on triaxial undrained effective stress path[J]. Chinese Journal of Geotechnical Engineering (accepted). DOI: 10.11779/CJGE20231243.(inChinese)

    [2] 房营光. 土体力学特性尺度效应的三轴抗剪试验分析[J]. 水利学报, 2014, 45(6): 742-748, 755. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406014.htm

    FANG Yingguang. Three-axial shear test analysis of scale effects on soil mechanical properties[J]. Journal of Hydraulic Engineering, 2014, 45(6): 742-748, 755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406014.htm

    [3]

    SHI D, NIU J, ZHANG J, et al. Effects of particle breakage on the mechanical characteristics of geogrid-reinforced granular soils under triaxial shear: A DEM investigation[J]. Geomechanics for Energy and the Environment, 2023, 34(4): 100446.

    [4]

    HU Z, GUO N, YANG Z X. Effect of fines loss on the microstructure and shear behaviors of gap-graded soils: A multiscale perspective[J]. Computers and Geotechnics, 2023, 162: 105711. doi: 10.1016/j.compgeo.2023.105711

    [5]

    LUO S, GONG F, LI L, et al. Linear energy storage and dissipation laws and damage evolution characteristics of rock under triaxial cyclic compression with different confining pressures[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(7): 2168-2182. doi: 10.1016/S1003-6326(23)66251-X

    [6]

    DONG T, ZHENG Y, LIANG K, et al. Shear strength and shear bands of anisotropic sand[J]. Acta Geotechnica, 2022, 17: 2841-2853. doi: 10.1007/s11440-021-01372-w

    [7]

    TANG J, WANG X, CHEN X, et al. Geotechnical Strain Localization Analysis Based on Micropolar Continuum Theory Considering Evolution of Internal Characteristic Length[J]. International Journal of Geomechanics, 2022, 22(8): 06022016. doi: 10.1061/(ASCE)GM.1943-5622.0002462

    [8] 刘嘉, 冯德銮. 考虑土颗粒微细观运动的多尺度耦合有限元分析方法[J]. 岩土力学, 2021, 42(4): 1186-1199. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104032.htm

    LIU Jia, FENG Deluan. Multiscale coupled finite element analysis considering microscopic movement of soil particles[J]. Rock and Soil Mechanics, 2021, 42(4): 1186-1199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104032.htm

  • 期刊类型引用(11)

    1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 . 百度学术
    2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 . 百度学术
    3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 . 百度学术
    4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 . 百度学术
    5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 . 百度学术
    6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 . 百度学术
    7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 . 百度学术
    8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 . 百度学术
    9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 . 百度学术
    10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 . 百度学术
    11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 . 百度学术

    其他类型引用(2)

图(4)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 13
出版历程
  • 收稿日期:  2024-04-30
  • 刊出日期:  2024-07-31

目录

    /

    返回文章
    返回