Application of high-strain testing in large-diameter steel pipe pile project in Rudong sea area
-
摘要: 基于江苏如东海域三根大直径敞口钢管桩的初打和复打高应变动测试验数据,提出了适用于该海域的桩端折减系数η的推荐值和承载力恢复计算公式,为该海域大直径钢管桩基础的承载力评估提供了技术依据。敞口钢管桩高应变试验数据显示,试验桩侧阻力的恢复系数都远大于端阻力的,且桩侧阻力随时间增长显著,但端阻力的增长却很小。基于此,推荐如东海域大直径敞开钢管桩的桩端阻力折减系数η取0.05进行估算。此外,通过桩基土体恢复和增长机理探讨,提出桩基承载力恢复计算公式,且验证误差在10%以内。Abstract: Based on the initial and repeated high-strain test data of three large-diameter open steel pipe piles in Rudong sea area of Jiangsu Province, a pile end reduction coefficient η applicable to the sea area and the formula for calculating the recovery of bearing capacity is proposed, and a technical basis for evaluating the bearing capacity of large-diameter steel pipe piles in the sea area is provided. According to the high-strain test data of open steel pipe piles, the recovery coefficients of the lateral resistance of the test piles are much greater than those of the end resistance, and the lateral resistance of the piles increases significantly over time, but the increase in the end resistance is very small. Based on this, it is recommended to use the pile end resistance reduction coefficient η= 0.05 for large-diameter open steel pipe piles in the Rudong sea area. In addition, by exploring the recovery and growth mechanism of pile foundation soil, a formula for calculating the recovery of pile foundation bearing capacity is proposed, and the verification error is within 10%.
-
-
表 1 土层基本物理力学参数
Table 1 Basic physical and mechanical parameters of soil layers
地层
编号土层
厚度/m含水率
w0/%密度
ρ/(g·cm-3)孔隙比e 压缩(固结)试验 固结快剪试验 CPTU 压缩系数
av0.1-0.2/MPa-1压缩模量
ES0.1-0.2/MPa黏聚力
c/kPa内摩擦角
φ/(°)qc/
MPafs/
kPa②-1 0~9.7 23.7 1.99 0.674 0.17 10.28 5.0 33.3 8.31 70.39 ②-2 0.9~5.2 33.6 1.88 0.940 0.36 5.61 29.0 15.0 3.00 49.55 ③-1 12.8~14.8 23.6 1.98 0.682 0.18 10.18 4.5 33.7 9.40 80.45 ④-2 7.2~8.7 33.2 1.88 0.935 0.39 5.08 28.0 15.2 3.42 65.06 ⑤ 1.7~10.5 26.9 1.93 0.777 0.26 7.13 6.5 32.6 8.32 70.32 ⑥-1 14.8~20.9 21.8 2.02 0.628 0.16 11.02 3.2 33.8 14.43 106.52 ⑥-2 0.6~9.9 31.5 1.90 0.886 0.39 5.06 21.0 21.2 — — ⑥-3 11.0~16.7 21.3 2.03 0.606 0.15 11.81 2.6 34.1 31.82 151.5 ⑦-3 8.9~13.3 22.1 2.01 0.632 0.16 11.18 2.8 34.0 — — 表 2 桩基础的设计
Table 2 Design of pile foundation
桩号 桩长/m 外径,壁厚/mm 入土深度/m #1 68.5 6000,60 49.00 #43 74.0 6400,70 49.45 #66 91.0 7000,70 54.30 表 3 承载力分析结果
Table 3 Distribution of bearing capacity of piles
桩号 测试内容 检测日期 休止时间/d 传递能量/kJ 实测曲线拟合法 侧阻力恢复系数 端阻力恢复系数 承载力恢复系数 拟合质量MQ 侧阻力/
kN端阻力/
kN单桩极限承载力/kN #1 初打 2021-10-10 — 598.0 28437 9938 38275 1.70 1.31 1.60 4.14 复打 2021-10-24 14 414.7 48202 13006 61208 4.10 #43 初打 2021-06-06 — 761.9 21216 10115 31331 1.97 1.25 1.74 4.20 复打 2021-06-10 4 735.3 41739 12670 54409 4.04 #66 初打 2021-01-14 — 1198.5 33379 17506 50885 2.01 1.06 1.68 4.75 复打 2021-01-17 3 1494.2 66999 18508 85507 3.70 注:承载力恢复系数=复打承载力值/初打承载力值。 表 4 端阻力值对比表
Table 4 Comparison of tip resistance of piles
桩号 实测端阻力/kN 计算值
①/kNη1 计算值
②/kNη2 #1 13006 227634.3 0.057 259426.8 0.050 #43 12670 233274.4 0.054 233932.8 0.054 #66 18508 402536.2 0.046 353108.8 0.052 表 5 承载力实测值与计算值对比表
Table 5 Comparison between measured and calculated values of bearing capacity of piles
桩号 QEOD/
kNQt/
kNt/d 李飒公式计算值/kN 误差率 Svinkin公式计算值/kN 误差率 Long公式计算值/kN 误差率 #1 38275 61208 14 66759 9.1% 51080~69768 -16.5%~14.0% 48041~67703 -21.5%~10.6% #43 31331 54409 4 50059 -8.0% 36890~50386 -32.2%~-7.4% 36938~44232 -32.1%~-18.7% #66 50885 85507 3 79681 -6.8% 58213~79511 -31.9%~-7.0% 59134~68213 -30.8%~-20.2% -
[1] LIU R, ZHOU L, LIAN J J, et al. Behavior of monopile foundations for offshore wind farms in sand[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2015, 142(1): 04051010.
[2] 码头结构设计规范: JTS 167—2018[S]. 北京: 人民交通出版社, 2018. Wharf Structure Design Code: JTS 167—2018[S]. Beijing: China Communications Press, 2018. (in Chinese)
[3] API RP 2A-WSD. Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms- Working Stress Design[S]. API Recommended Practice 2A-WSD, 2010.
[4] 倪敏. 大直径钢管桩竖向承载能力研究[D]. 天津: 天津大学, 2014. NI Min. Research on Axial Load-Bearing Capacity of Large Diameter Pipe Piles[D]. Tianjin: Tianjin University, 2014. (in Chinese)
[5] 刘润, 闫玥, 闫澍旺. 大直径超长桩后继打桩拒锤现象分析及单桩承载力计算[J]. 岩土力学与工程学报, 2008, 27(增刊2): 3459-3464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S2027.htm LIU Run, YAN Yue, YAN Shuwang. Study on refusal of restarting of large diameter and deep penetration pile and bearing capacity calculation[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2): 3459-3464. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S2027.htm
[6] 李飒, 李婷婷, 张树德, 等. 基于实测数据的桩基承载力恢复计算与分析[J]. 工程力学, 2018, 35(6): 182-190. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806023.htm LI Sa, LI Tingting, ZHANG Shude. A study on pile setup based on measured in situ data[J]. Engineering Mechanics, 2018, 35(6): 182-190. (in Chinese)). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806023.htm
[7] 杨生彬, 李友东. PHC管桩挤土效应试验研究[J]. 岩土工程技术, 2006, 20(3): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ200603002.htm YANG Shengbin, LI Youdong. Experimental research on compacting effects of PHC piles[J]. Geotechnical Engineering Technique, 2006, 20(3): 117-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ200603002.htm
[8] 水运工程基桩试验检测技术规范: JTS 240—2020[S]. 北京: 人民交通出版社, 2020. Technical Code for Testing and Inspection of Waterway Engineering Foundation Piles: JTS 240—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
[9] 曹宇春, 吴世明, 高广远. 桩基动力检测技术的现状及存在的问题[J]. 上海地质, 2002(81): 43-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200201015.htm CAO Yuchun, WU Shiming, GAO Guangyuan. Application situation of pile dynamic detections and existed problems[J]. Shanhai Geology, 2002(81): 43-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200201015.htm
[10] 建筑基桩检测技术规范: JGJ 106—2014[S]. 北京: 中国建筑工业出版社, 2014. Technical Code for Testing of Building Foundation Piles: JGJ 106—2014[S]. Beijing: China Architecture and Building Press, 2014. (in Chinese)
[11] 梁超, 刘润. 大直径钢管桩竖向承载力计算方法研究[J]. 地下空间与工程学报, 2018, 14(1): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201801024.htm LIANG Chao, LIU Run. Research on evaluation methods of vertical bearing capacity for large diameter steel pipe pile[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 169-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201801024.htm
[12] SVINKIN M R. Discussion on setup and relaxation in glacial sand[J]. Journal of Geotechnical Engineering, 1996, 122(4): 319-321.
[13] LONG J, KERRIGAN J, WYSOCKEY M. Measured time effects for axial capacity of driven piling[J]. Transportation Research Record Journal of the Transportation Research Board, 1999, 1663(1): 8-15.