Numerical simulation of layered phenomena and mechanism of wide-graded soil deposits using pluviation method for centrifuge tests
-
摘要: 落雨法因其在模型制备过程与自然条件下砂土沉积过程相似,因而成为土工离心试验地基模型常用的模型制备手段,但是有关落雨法研究主要集中于相对密实度控制,而对于分层现象关注较少,尤其宽级配土。针对宽级配土落雨法制备过程出现的分层现象,利用PFC3D数值模拟软件,探讨了落雨法制备过程分层现象的物理机制和出砂口落距、移动速度、宽度对分层现象的影响。结果表明:在真空介质中,粗细颗粒不出现分层现象;而在非真空介质中,粗、细颗粒出现了分层现象,原因为非真空环境下粗、细颗粒下落过程中产生了相对速度差,内在机制为粗、细颗粒半径不同受到平均表面流体阻力不同,从而造成不同粒径颗粒分离现象;随环境介质密度的增加,粗、细颗粒在下落过程中更易于发生分离,出砂口落距、移动速度和流量对分层现象具有一定程度影响。Abstract: Because it is similar to the process of sand deposition under natural conditions, the sand pluviation has become a common method of model preparation for foundation models in geotechnical centrifugal tests. However, the researches on the sand pluviation mainly focus on the control of the relative density, and pays little attention to the layered phenomenon of sand, especially for wide-graded soils. Aiming at the layered phenomenon of sand in the preparation process of wide-graded soils by the sand pluviation method, the physical mechanism of layered phenomenon of sand in the process of rain preparation and the influences of falling distance, moving speed and width of sand outlet on the layered phenomenon of sand are discussed by using the PFC3D numerical simulation software. The results show that there is no layered phenomenon of coarse and fine particles in vacuum medium. In the non-vacuum medium, the coarse and fine particles have layered phenomena of sand, because the relative velocity difference occurs during the fall of the coarse and fine particles in the non-vacuum environment. The internal mechanism is that the average surface fluid resistance of the coarse and fine particles is different due to the different radii of the coarse and fine particles, resulting in the separation of particles with different particle sizes. With the increase of the density of the environment medium, the coarse and fine particles are more easily separated during the falling process, and the falling distance, moving speed and flow rate of the sand outlet have a certain influence on the layered phenomenon of sand.
-
Keywords:
- pluviation method /
- wide-graded soil /
- PFC3D /
- sand layering phenomenon /
- sand layering mechanism
-
0. 引言
土的缩限是Atterberg (1911) 提出的稠度界限之一,最早被Terzaghi (1925) 引入土力学,指湿土干燥(脱湿)过程中,土从半固态转变为固态时的含水率[1],低于该含水率土体积不再收缩[2](即土体不再收缩时对应的最大含水率[3])。《岩土工程基本术语标准:GB/T 50279—2014》[4]中缩限定义为:饱和黏性土的含水率因干燥减少至体积不再变化时的界限含水率。值得注意的是,虽然黏土的收缩行为[5-7]及其收缩曲线[8-9]的研究成果非常丰富,但有关于土的缩限[10]的研究较少。本文工作聚焦于缩限的准确确定。
作为黏土重要的物理性质指标之一,缩限的确定方法大体分2类。
第1类方法针对扰动样(泥浆样),将土制成含水率稍大于液限的泥浆,填入收缩皿后排气,刮平试样表面,擦净收缩皿外部,测试样质量与体积(收缩皿容积),将收缩皿试样风干至颜色变淡,烘干后测干土质量与烘干后体积(认为不再收缩时的体积与烘干后体积相同),在假定收缩至体积不变时土是饱和的前提下计算出缩限。英国标准BS 1377—2:1990[2]与ASTM D427—04[11]均采用此法,由于体积量测采用汞,后均因安全原因被撤回。ASTM D4943—18[12]与《土工试验方法标准:GB/T 50123—2019》[13]中“9.5缩限试验”用蜡封(浮称)法取代汞测烘干后体积,是现行的国内外标准。
第2类方法针对原状样与压实样(块状样),将圆柱试样(或环刀试样)置于收缩仪上风干,试验过程中测试样体积收缩(或高度变化)与质量变化,直至试样体积不变为止,从而获得试样的收缩曲线(用体积变化/线缩率/孔隙比–含水率关系表达),在收缩曲线上用初始线性段与最终水平段的交点确定缩限。BS 1377—2:1990[2]即采用该方法,亦由于其体积量测采用汞被撤回。GB/T 50123—2019[13]中“26收缩试验”采用该方法,与BS方法[2]不同的是:采用百分表量测试样高度变化以获得线缩率,避免了采用汞造成的危害。
以上2类缩限确定方法存在的问题是:第1类方法假定收缩至体积不变时土是饱和的,实际上土体收缩至体积不变时,土是非饱和的,假定饱和,高估了缩限;第2类方法在收缩曲线上用初始线性段与最终水平段的交点而非收缩至体积不变点确定缩限,与缩限的定义不符,亦高估了缩限。
为此,本文从缩限定义[4]出发,分别建议了基于“缩限试验”与“收缩试验”的真实缩限值确定方法,并采用6种黏土开展系统的“缩限试验”与“收缩试验”,结果表明:由基于“缩限试验”的泥浆样与“收缩试验”的泥浆固结样获得的真实缩限值几乎相同;GB/T 50123—2019中“缩限试验”、“收缩试验”方法确定出的缩限值约为真实缩限值的2.7倍;真实缩限状态下,土是非饱和的,其饱和度介于22%~57%。本文试图为在土工测试中更准确地确定缩限提供参考。
1. 研究方案
1.1 试验土样
试验采用6种土样:荆门黄褐色膨胀土、Denver claystone、荆门棕褐色膨胀土、信阳黏土、武汉黏土、三门峡粉质黏土,其物理性质指标测试结果见表 1。
表 1 试验用土的物理性质指标Table 1. Physical property indices of test soils土样名称 Gs[13] >
0.075 mm/%[13]0.005~
0.075 mm/%[13]0.002~
0.005 mm/%[13]<
0.002 mm/%[13]液限
/%[13]塑限
/%[13]塑性指数[13] USCS
定名[14]比表
面积EGME
/(m2·g-1)
[15]CEC
(NH4+)
/(mmol·kg-1) [13]标准吸湿含水率/%
[16]自由膨胀率/%
[17]膨胀潜势[17] 荆门黄褐色膨胀土 2.75 2.1 47.4 21.5 29.0 62.9 25.5 37.4 CH 236.5 309 7.3 75 中 Denver claystone 2.72 8.5 44.2 20.6 26.7 46.0 23.2 22.8 CL 88.7 160 3.8 38 — 荆门棕褐色膨胀土 2.72 11.6 42.4 26.7 19.3 41.8 20.7 21.1 CL 110.4 254 5.1 40 弱 信阳黏土 2.72 0.5 57.0 13.3 29.1 41.6 18.8 22.8 CL 110.2 206 4.8 40 弱 武汉黏土 2.73 5.5 63.9 9.6 21.0 40.3 18.2 22.1 CL 112.5 154 3.7 39 — 三门峡粉质黏土 2.72 0.5 82.8 5.7 11.1 35.2 19.1 16.1 CL 108.5 149 4.3 30 — 1.2 缩限试验
参照GB/T 50123—2019 [13]中“9.5缩限试验”方法,将含水率稍大于液限的泥浆填入收缩皿开展缩限试验。收缩皿规格为:直径5 cm,高3 cm。缩限试验开始时的6种泥浆试样照片见图 1。
与国标方法有区别的是:将泥浆试样室内风干至试样与收缩皿脱开后,将试样置于收缩仪上风干至百分表读数不变(体积不变)为止,见图 2,此时测试样质量,根据此状态(体积不变)下的质量与干土质量确定出含水率,即为真实缩限值(土体积不再收缩时对应的最大含水率)。
其余试验步骤均按国标方法执行。《土工试验标准:GB/T 50123—2019》[13]中缩限公式为
ws=(0.01w′−V0−Vdmd⋅ρw)×100% , (1) 式中,ws为缩限(%),w′为泥浆制备含水率(%),V0为收缩皿容积(cm3),Vd为烘干后土的体积(cm3),md为烘干后土的质量(g),ρw为水的密度(g/cm3)。其中,V0-Vd指收缩过程中土的体积收缩量,乘以水的密度ρw,是由于收缩减少的水的质量;但是,土样开始收缩时是饱和的,达到缩限状态时是非饱和的,式(1)没有考虑由饱和状态过渡到非饱和状态减少的水质量,即假定了缩限相应的含水状态是饱和的。
1.3 收缩试验
参照GB/T 50123—2019[13]中“26收缩试验”方法开展试验。为更好地比对试验结果,采用泥浆固结样,其制备方法为:将土样风干、碾散、过0.5 mm筛,在真空搅土器中加水至2倍液限搅拌均匀后,倒入固结容器;再置入高压固结仪施加目标固结压力(本文为34.7 kPa)。固结完成后,将试样推出用保鲜膜包好,试验前用环刀沿泥浆固结样竖向切取环刀试样。
与国标方法有区别的是:试验过程中测记百分表读数(目的是获得线缩率δ)与称质量(目的是获得含水率w)时记录风干历时t,试验结束后,绘制δ与w为双y轴、t为x轴的双y轴图,由线缩率不变的起始点找到同一时刻对应的含水率,即为真实缩限值(土体积不再收缩时对应的最大含水率)。
其余试验步骤均按国标方法执行。收缩试验过程中的试样照片见图 3。
2. 试验结果分析
2.1 缩限试验
采用GB/T 50123—2019 [13]中“9.5缩限试验”方法测得6种土样缩限试验数据w′,V0,Vd,md见表 2,假定水的密度为1.0 g/cm3(文中水的密度均作此假定),代入式(1)获得缩限ws列入表 2。
基于土的三相图,缩限ws与相应饱和度Sr(%)的关系为
Sr=mdwsρwVd−mdGsρw×100%, (2) 式中,Gs为土粒相对质量密度,6种土样的Gs见表 1。据式(2)计算Sr列入表 2,可见Sr介于93%~99%,表明处于饱和状态,证实:国标方法是在假定收缩至体积不变时土是饱和的前提下计算缩限。
表 2 6种土样缩限试验数据Table 2. Shrinkage limit test data of 6 types of clay试验土样 w′
/%V0
/cm3Vd
/cm3md
/gws
/%Sr
/%荆门黄褐色膨胀土 79.9 59.88 24.62 51.116 10.9 93 Denver claystone 60.7 59.61 33.56 60.942 18.0 98 荆门棕褐色膨胀土 56.9 59.69 32.27 63.292 13.6 95 信阳黏土 47.5 59.4 36.06 70.222 14.3 98 武汉黏土 44.6 58.97 36.00 72.193 12.8 97 三门峡粉质黏土 45.5 59.73 38.50 72.433 16.2 99 计算出饱和度不是100%,有以下原因:①初始泥浆不一定完全饱和;②收缩皿口不一定完全刮平;③试样烘干前后可能有体积变化;④水的密度不一定等于1.0 g/cm3;⑤土粒相对质量密度Gs有偏差可能等。但从另一视角看,6种土样,最小偏差1%,最大偏差7 %,是一个较为理想的推算。
将收缩皿试样置于收缩仪上风干至体积不变时的试样质量m、烘干后土的质量md、烘干后土的体积Vd列在表 3中,由缩限的定义(土体积不再收缩时对应的最大含水率)确定出真实缩限ws:
ws = m−mdmd×100%。 (3) 表 3 6种土样真实缩限状态(基于缩限试验)Table 3. Physical properties of 6 types of clays under realistic state of shrinkage limit based on the shrinkage limit test试验土样 m
/gmd
/gVd
/cm3ws
/%Sr
/%荆门黄褐色膨胀土 54.56 51.116 24.62 6.7 57 Denver claystone 63.43 60.942 33.56 4.1 22 荆门棕褐色膨胀土 66.93 63.292 32.27 5.7 40 信阳黏土 74.31 70.222 36.06 5.8 40 武汉黏土 74.99 72.193 36.00 3.9 29 三门峡粉质黏土 75.43 72.433 38.50 4.1 25 由表 3可见真实缩限比国标方法测得的缩限(表 2)要低39%~77%,偏差幅度较大。假定试样烘干前后体积不变(实测数据表明偏差在1%以内),根据式(2)计算Sr列入表 3,可见其饱和度介于22%~57%,证实“实际上土体收缩至体积不变时,土是非饱和的,假定饱和,高估了缩限。”
2.2 收缩试验
采用GB/T 50123—2019 [13]中“26收缩试验”方法测得6种土样用线缩率δ(%)与含水率w(%)表达的收缩曲线见图 4,在收缩曲线上用初始线性段与最终水平段的交点确定出缩限及其相应的线缩率。可见其确定的缩限与缩限的定义不符:交点相应线缩率均小于体积不变时的线缩率,交点相应含水率均高于收缩至体积不变时的最大含水率,即国标方法得到的缩限高估了缩限值。
从缩限定义(土体积不再收缩时对应的最大含水率)出发,采用以下步骤,求取真实缩限值:①绘制线缩率δ–含水率w–时间t双y轴图(图 5);②从δ–t关系曲线上找到δ最大值(代表线缩率不变,即体积不变)的起始点(脱湿过程中,体积不变条件下,这一点对应的含水率最大),确定出相应t值;③由t值在w–t关系曲线上确定出相应w值,即为真实缩限值。
将基于收缩试验结果的国标方法与本文方法获得的缩限列入表 4,可见真实缩限值比国标方法测得的缩限值要低43%~76%,幅度亦很大。将土体积不再收缩时的质量m、干土质量md、烘干后土的体积Vd列入表 4,根据式(2)计算得到真实缩限对应的Sr(表 4),可见其饱和度介于22%~47%,再次证实“土体收缩至体积不变时,土是非饱和的”。
表 4 6种土样的收缩试验数据Table 4. Shrinkage test data of 6 types of clay试验土样 国标
方法
ws
/%本文
方法
ws
/%ws
降幅/%土体积不再收缩时 m
/gmd
/gVd
/cm3Sr
/%荆门黄褐色膨胀土 11.6 6.6 43 69.42 65.093 32.80 47 Denver claystone 16.9 4.0 76 82.41 79.270 43.63 22 荆门棕褐色膨胀土 14.1 6.1 57 82.56 77.833 40.65 39 信阳黏土 15.2 6.4 58 82.16 77.246 40.15 42 武汉黏土 13.0 3.7 72 87.29 84.140 43.61 24 三门峡粉质黏土 15.0 4.1 73 85.81 82.440 45.52 22 3. 讨论
与缩限同为稠度界限的液限与塑限的定义和试验方法均针对扰动样,从这个意义上讲,由基于扰动样(泥浆样)的缩限试验而非基于原状样与压实样(块状样)的收缩试验确定出的缩限更符合稠度界限的物理实质。
因此,采用由缩限试验获得的真实缩限值作为比较的基准,探讨基于缩限试验与收缩试验的国标方法与本文方法获得的6种黏土的4类缩限之间的量化关系,为便于比较,4类缩限值依次命名为ws1,ws2,ws3,ws4,见表 5,其对比见图 6。
表 5 国标方法与本文方法获得的4类缩限值Table 5. Shrinkage limits determined by GB/T 50123—2019 and this study(%) 试验土样 缩限试验 收缩试验 本文方法
ws1国标方法
ws2本文方法
ws3国标方法
ws4荆门黄褐色膨胀土 6.7 10.9 6.6 11.6 Denver claystone 4.1 18.0 4.0 16.9 荆门棕褐色膨胀土 5.7 13.6 6.1 14.1 信阳黏土 5.8 14.3 6.4 15.2 武汉黏土 3.9 12.8 3.7 13.0 三门峡粉质黏土 4.1 16.2 4.1 15.0 由ws2与ws1的对比可见:ws2= 2.65ws1,R2=0.89;表明GB/T 50123—2019中“9.5缩限试验”方法获得的缩限值大约为真实缩限值的2.7倍,R2=0.89,表明二者间具有较好的相关性。
由ws3与ws1的对比可见:ws3= 1.02ws1,R2= 1.00;表明采用泥浆样的缩限试验与采用泥浆固结样的收缩试验获得的真实缩限值非常接近,几乎相同,缩限作为稠度界限之一,取值与试验方法无关而具有唯一性。
对比ws4与ws1可见:ws4= 2.68ws1,R2=0.92,表明GB/T 50123—2019中“26收缩试验”获得的缩限值亦大约为真实缩限值的2.7倍,R2=0.92表明二者间亦具有较好的相关性。
此处需要补充说明的是:2.7倍是统计结果,不具普适性;表 5表明这个倍数介于1.6~4.4,具有相当大的离散性。
4. 结论
(1)基于缩限定义,在GB/T 50123—2019中“9.5缩限试验”方法基础上,建议:将泥浆试样室内风干至与收缩皿脱开后,将试样置于收缩仪上风干至百分表读数不变为止,据此状态下的质量与干土质量确定出真实缩限值。
(2)基于缩限定义,在GB/T 50123—2019中“26收缩试验”方法基础上,建议:试验过程中测记百分表读数与称质量时记录风干历时t,试验结束后,绘制线缩率与含水率为双y轴、时间为x轴的双y轴图,由线缩率不变的起始点找到同一时刻对应的含水率,即真实缩限值。
(3)由基于“缩限试验”的泥浆样与“收缩试验”的泥浆固结样获得的真实缩限值几乎相同,表明作为稠度界限之一的缩限,取值与所采用的试验方法无关而具有唯一性。
(4)6种黏土试验结果表明:GB/T 50123—2019中“9.5缩限试验”“26收缩试验”方法确定出的缩限值约为真实缩限值的2.7倍,偏差是相当大的。
(5)6种黏土试验结果表明:真实缩限状态下,土是非饱和的,其饱和度介于22 %~57 %。
(6)GB/T 50123—2019高估缩限的原因是:“缩限试验”方法假定收缩至体积不变时土是饱和的;“收缩试验”方法用收缩曲线初始线性段与最终水平段的交点而非收缩至体积不变点确定缩限。
-
表 1 试验材料物理指标
Table 1 Physical indexes of test materials
试验
材料Gs ρmax/
(g·cm-3)ρmin/
(g·cm-3)d10/
mmd30/
mmd50/
mmd60/
mmCu Cc 石英砂 2.63 1.962 1.611 0.149 0.253 0.759 0.916 6.15 0.47 珊瑚土 2.78 1.750 1.289 0.149 0.253 0.759 0.916 6.15 0.47 表 2 参数设置
Table 2 Parameter setting
微观参数 值 颗粒间接触模型 Hysteretic model 颗粒与墙体间接触模型 Linear model 颗粒剪切模量/MPa 50 颗粒与墙体切向刚度/MPa 100 颗粒与墙体法向刚度/MPa 100 粒径/mm 5~14 颗粒密度/(kg·m-3) 2650 泊松比 0.2 摩擦系数 0.1 阻尼 0.1 重力加速度/(m·s-2) 9.81 -
[1] 吴建平, 顾尧章, 余祖国. 砂雨法成型中影响试样密度的因素[J]. 大坝观测与土工测试, 1990(3): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC199003005.htm WU Jianping, GU Yaozhang, YU Zuguo. Factors affecting specimen density in pluviation[J]. Dam Observation and Geotechnical Tests, 1990(3): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC199003005.htm
[2] ZHAO Y, GAFAR K, ELSHAFIE M, et al. Calibration and use of a new automatic sand pourer[C]// International Conference on Physical Modeling in Geotechnics, ICPMG 2006. Hong Kong: The Hong Kong University of Science and Technology, 2006.
[3] LAGIOIA R, SANZENI A, COLLESELLI F. Air, water and vacuum pluviation of sand specimens for the triaxial apparatus[J]. Soils and Foundations, 2006, 46(1): 61-67. doi: 10.3208/sandf.46.61
[4] 马险峰, 孔令刚, 方薇, 等. 砂雨法试样制备平行试验研究[J]. 岩土工程学报, 2014, 36(10): 1791-1800. doi: 10.11779/CJGE201410005 MA Xianfeng, KONG Linggang, FANG Wei, et al. Parallel tests on preparation of samples with sand pourer[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1791-1800. (in Chinese) doi: 10.11779/CJGE201410005
[5] 李浩, 罗强, 张正, 等. 砂雨法制备砂土地基模型控制要素试验研究[J]. 岩土工程学报, 2014, 36(10): 1872-1878. doi: 10.11779/CJGE201410015 LI Hao, LUO Qiang, ZHANG Zheng, et al. Experimental study on control element of sand pourer preparation of sand foundation model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1872-1878. (in Chinese) doi: 10.11779/CJGE201410015
[6] 方薇, 周志刚. 落砂成型过程及模型孔隙率影响因素研究[J]. 岩土工程学报, 2019, 41(11): 2086-2093, 2164. doi: 10.11779/CJGE201911014 FANG Wei, ZHOU Zhigang. Sand-fall molding process and influencing factors of model porosity[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2086-2093, 2164. (in Chinese) doi: 10.11779/CJGE201911014
[7] 蒋明镜. 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. doi: 10.11779/CJGE201902001 JIANG Mingjing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) doi: 10.11779/CJGE201902001
[8] 张旭东. 落雨法重塑宽级配土地基模型分层机制与控制方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2024. ZAHNG Xudong. Research on Layered Mechanism and Control Method of Wide-Graded Soil Base Model Remodeling by Sand Pluviation[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2024. (in Chinese)
[9] 王海, 王永志, 袁晓铭, 等. 砂雨法饱和模型制样相对密度控制要素与评价方法[J]. 西南交通大学学报, 2019, 54(2): 343-350, 372. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201902015.htm WANG Hai, WANG Yongzhi, YUAN Xiaoming, et al. Control factors and assessment technique of relative density using pluviation method for saturated model[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 343-350, 372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201902015.htm
[10] 王浩然, 王永志, 王海, 等. 砂雨模型制备PFC3D的数值模拟[J]. 水利水运工程学报, 2021(4): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202104009.htm WANG Haoran, WANG Yongzhi, WANG Hai, et al. Numerical simulation of PFC3D-based model for sample reconstitution using sand pluviation[J]. Hydro-Science and Engineering, 2021(4): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202104009.htm