An anisotropic creep-permeability model for rock
-
摘要: 地下工程服役期较长,富水环境下围岩蠕变变形加剧,三向应力下围岩渗透性各向异性特征凸显,为了描述围岩蠕变过程中渗透率各向异性特征,将岩石简化为立方体模型,结合蠕变曲线特征分阶段建立岩石正交各向异性蠕变-渗透率模型。黏弹性阶段定义裂隙与岩石的黏滞系数比、引入侧向影响系数表示侧向应力对裂隙开度影响,黏塑性阶段引入表示裂隙对渗流通道影响的修正系数,结合岩石各向异性蠕变损伤模型、立方定律、含裂隙岩石渗透率方程,建立岩石正交各向异性蠕变-渗透率模型。利用真三轴条件下岩石蠕变-渗流试验结果对各向异性蠕变-渗透率模型进行验证,模拟了不同条件下渗透率演化。结果表明:与传统Kozeny-Carman(K-C)模型及已有各向异性蠕变-渗透率模型相比,提出的正交各向异性蠕变-渗透率模型精度更高,可以描述黏弹性阶段渗透率因岩石孔裂隙逐渐被压密而逐渐降低、加速蠕变阶段渗透率在裂隙逐渐汇聚影响下突增的变化趋势。对正交各向异性蠕变-渗透率模型的关键参数进行了敏感性分析,随着裂隙与岩石的黏滞系数比增加,渗透率衰减越快,渗透率稳定值越低,随着侧向影响系数越高渗透率初始衰减速率越高,渗透率稳定值越低;黏塑性阶段修正系数越高,加速蠕变阶段渗透率开始大幅增加。Abstract: The service life of underground engineering is so long that the creep deformation of the surrounding rock can be intensified in the water environment. The permeability shows an anisotropic trend under the three-dimension stresses. The rock is simplified as a cube model, and a rock creep permeability model is established in stages based on the creep characteristics. At the viscoelastic stage, the ratio of viscosity coefficients between cracks and rocks is defined, and a lateral influence coefficient is introduced to represent the influence of lateral stress on crack opening. In the viscoplastic stage, a correction coefficient is defined to represent the influences of cracks on seepage channels. An anisotropic creep-permeability model is established combined with the anisotropic creep damage model for rock, cubic law, and the permeability model for fractured rock. The creep-seepage tests under true triaxial conditions are performed, and the anisotropic creep-permeability model is validated. The parameters can be determined and the permeability evolution under different conditions is analyzed. The proposed model shows the higher accuracy by comparing with the traditional K-C model and the previously anisotropic creep-permeability model. It can be used to describe the trend that the permeability decreases due to the gradual compaction of pores and cracks at the viscoelastic stage, and it increases suddenly caused by the gradual convergence of cracks at the accelerated creep stage. The sensitivity analysis is conducted on the parameters in the anisotropic creep-permeability model. As the viscosity coefficient ratio increases, the permeability decays fast and the stable permeability decreases. As the viscosity coefficient increases, the initial decay rate of permeability increases, and the stable permeability decreases. At the accelerated creep stage, as the correction coefficient increases, the permeability increases significantly.
-
Keywords:
- creep-seepage /
- creep model /
- permeability model /
- orthogonal anisotropy
-
-
表 1 σ3=5 MPa,σ2=20 MPa条件下渗透率模型参数
Table 1 Parameters of permeability model under σ3=5 MPa and σ2=20 MPa
蠕变应力比 ξe 0.4 18 9.81 9.81 9.81 0.5 4.18 4.95 4.95 0.6 2.06 4.30 4.30 0.7 0.94 3.37 3.37 0.8 11.01 13.85 13.85 0.9 8.72 8.72 8.72 0.95 0.81 2.11 2.11 -
[1] 赵阳升. 岩体力学发展的一些回顾与若干未解之百年问题[J]. 岩石力学与工程学报, 2021, 40(7): 1297-1336. ZHAO Yangsheng. Retrospection on the development of rock mass mechanics and the summary of some unsolved centennial problems[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1297-1336. (in Chinese)
[2] LIU Z B, SHAO J F, XIE S Y, et al. Gas permeability evolution of clayey rocks in process of compressive creep test[J]. Materials Letters, 2015, 139: 422-425. doi: 10.1016/j.matlet.2014.10.139
[3] LIU Z B, SHAO J F. Strength behavior, creep failure and permeability change of a tight marble under triaxial compression[J]. Rock Mechanics and Rock Engineering, 2017, 50(3): 529-541. doi: 10.1007/s00603-016-1134-6
[4] ZHANG Y, SHAO J F, XU W Y, et al. Creep behaviour and permeability evolution of cataclastic sandstone in triaxial rheological tests[J]. European Journal of Environmental and Civil Engineering, 2015, 19(4): 496-519. doi: 10.1080/19648189.2014.960103
[5] 王如宾, 徐卫亚, 王伟, 等. 坝基硬岩蠕变特性试验及其蠕变全过程中的渗流规律[J]. 岩石力学与工程学报, 2010, 29(5): 960-969. WANG Rubin, XU Weiya, WANG Wei, et al. Experimental investigation on creep behaviors of hard rock in dam foundation and its seepage laws during complete process of rock creep[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 960-969. (in Chinese)
[6] 张玉, 徐卫亚, 赵海斌, 等. 渗流-应力-流变耦合作用下破碎带砂岩渗透演化规律试验研究[J]. 中国石油大学学报(自然科学版), 2014, 38(4): 154-161. ZHANG Yu, XU Weiya, ZHAO Haibin, et al. Experimental investigation on permeability evolution of sandstone from fractured zone under coupling action of hydro-mechanical-creep[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(4): 154-161. (in Chinese)
[7] 蔡婷婷, 冯增朝, 姜玉龙, 等. 不同温度应力下煤体蠕变中的渗流规律研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 101-107. CAI Tingting, FENG Zengchao, JIANG Yulong, et al. Seepage evolution in coal creep under different temperatures and different stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 101-107. (in Chinese)
[8] XU P, YANG S Q. Permeability evolution of sandstone under short-term and long-term triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 85: 152-164. doi: 10.1016/j.ijrmms.2016.03.016
[9] YANG S Q, HU B. Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa[J]. Scientific Reports, 2020, 10(1): 1900. doi: 10.1038/s41598-020-58595-2
[10] 马丹, 段宏宇, 张吉雄, 等. 断层破碎带岩体突水灾害的蠕变-冲蚀耦合力学特性试验研究[J]. 岩石力学与工程学报, 2021, 40(9): 1751-1763. MA Dan, DUAN Hongyu, ZHANG Jixiong, et al. Experimental investigation of creep-erosion coupling mechanical properties of water inrush hazards in fault fracture rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(9): 1751-1763. (in Chinese)
[11] 王凯, 郭阳阳, 王刚, 等. 真三轴路径下含瓦斯复合煤岩体渗流及力学破坏特性[J]. 煤炭学报, 2023, 48(1): 226-237. WANG Kai, GUO Yangyang, WANG Gang, et al. Seepage and mechanical failure characteristics of gas-bearing composite coal-rock under true triaxial path[J]. Journal of China Coal Society, 2023, 48(01): 226-237. (in Chinese)
[12] 岳少飞, 王开, 张小强, 等. 不同加载速率无烟煤蠕变特性及能量演化规律[J]. 煤炭学报, 2023, 48(8): 3060-3075. YUE Shaofei, WANG Kai, ZHANG Xiaoqiang, et al. Creep properties and energy evolution of anthracite coal with different loading rates[J]. Journal of China Coal Society, 2023, 48(8): 3060-3075. (in Chinese)
[13] 于冰冰, 李清, 赵桐德, 等. 基于应力与时间双阈值的岩石全时态非线性蠕变损伤模型[J]. 岩石力学与工程学报, 2023, 42(8): 1928-1944. YU Bingbing, LI Qing, ZHAO Tongde, et al. Full-time nonlinear creep damage model of fractured rock mass based on stress-time double threshold[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(8): 1928-1944. (in Chinese)
[14] 程爱平, 付子祥, 刘立顺, 等. 胶结充填体蠕变硬化-损伤特征及非线性本构模型[J]. 采矿与安全工程学报, 2022, 39(3): 449-457. CHENG Aiping, FU Zixiang, LIU Lishun, et al. Creep hardening-damage characteristics and nonlinear constitutive model of cemented backfill[J]. Journal of Mining & Safety Engineering, 2022, 39(3): 449-457. (in Chinese)
[15] 程爱平, 戴顺意, 舒鹏飞, 等. 考虑应力水平和损伤的胶结充填体蠕变特性及本构模型[J]. 煤炭学报, 2021, 46(2): 439-449. CHENG Aiping, DAI Shunyi, SHU Pengfei, et al. Creep characteristics and constitutive model of cemented backfill considering stress and damage[J]. Journal of China Coal Society, 2021, 46(2): 439-449. (in Chinese)
[16] LIU X Y, YU J, ZHANG J Z, et al. Anisotropic time-dependent deformation and damage constitutive model of rock under true triaxial compression[J]. Mechanics of Time-Dependent Materials, 2024, 28: 2177-2203. doi: 10.1007/s11043-023-09617-9
[17] 康红普, 伊康. 深部软岩巷道围岩扩容与流变特性模拟研究及应用[J]. 煤炭学报, 2023, 48(1): 15-33. KANG Hongpu, YI Kang. Simulation study on dilatant and rheologic properties of soft rocks surrounding deep roadway and its application[J]. Journal of China Coal Society, 2023, 48(1): 15-33. (in Chinese)
[18] 贾善坡, 陈卫忠, 于洪丹, 等. 泥岩隧道施工过程中渗流场与应力场全耦合损伤模型研究[J]. 岩土力学, 2009, 30(1): 19-26. JIA Shanpo, CHEN Weizhong, YU Hongdan, et al. Research on seepage-stress coupling damage model of Boom clay during tunneling[J]. Rock and Soil Mechanics, 2009, 30(1): 19-26. (in Chinese)
[19] 李祥春, 张良, 赵艺良. 常规三轴压力下含瓦斯煤蠕变-渗流演化规律[J]. 工程科学与技术, 2018, 50(4): 55-62. LI Xiangchun, ZHANG Liang, ZHAO Yiliang. Evolution of gas-filled coal creep-seepage under conventional triaxial compression[J]. Advanced Engineering Sciences, 2018, 50(4): 55-62. (in Chinese)
[20] ZHOU H W, WANG L J, RONG T L, et al. Creep-based permeability evolution in deep coal under unloading confining pressure[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 185-196. doi: 10.1016/j.jngse.2019.03.010
[21] ZHOU H W, ZHANG L, WANG X Y, et al. Effects of matrix-fracture interaction and creep deformation on permeability evolution of deep coal[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104236.
[22] 刘帅奇, 马凤山, 郭捷, 等. 致密页岩缝网蠕变-渗流耦合规律研究[J]. 工程地质学报, 2020, 28(增): 9-18. LIU Shuaiqi, MA Fengshan, GUO Jie, et al. Study on the rules of creep-seepage coupling of dense shale fracturing network[J]. Journal of Engineering Geology, 2020, 28(S): 9-18. (in Chinese)
[23] 张雷, 周宏伟, 王向宇, 等考虑蠕变影响的深部煤体分数阶渗透率模型研究[J]. 岩土工程学报, 2020, 42(8): 1516-1524. doi: 10.11779/CJGE202008017 ZHANG Lei, ZHOU Hongwei, WANG Xiangyu, et al. Fractional permeability model for deep coal considering creep effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1516-1524. (in Chinese) doi: 10.11779/CJGE202008017
[24] 王路军, 曹志国, 程建超, 等. 煤矿地下水库坝基层间岩体破坏及突渗力学模型[J]. 煤炭学报, 2023, 48(3): 1192-1208. WANG Lujun, CAO Zhiguo, CHENG Jianchao, et al. Failure analysis of rock strata between upper and lower coals under underground reservoir in coal mine and its critical percolation model of jumping permeability[J]. Journal of China Coal Society, 2023, 48(3): 1192-1208. (in Chinese)
[25] 亓宪寅. 各向异性煤岩气-固耦合机理研究[D]. 北京: 中国科学院大学, 2017. QI Xianyin. Study on Gas-Solid Coupling Mechanism of Anisotropic Coal and Rock[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
[26] 刘文博, 张树光, 李若木. 一种基于能量耗散理论的岩石加速蠕变模型[J]. 煤炭学报, 2019, 44(9): 2741-2750. LIU Wenbo, ZHANG Shuguang, LI Ruomu. Accelerated creep model of rock based on energy dissipation theory[J]. Journal of China Coal Society, 2019, 44(9): 2741-2750. (in Chinese)
[27] 沈才华, 张兵, 王文武. 一种基于应变能理论的加速蠕变本构模型[J]. 煤炭学报, 2014, 39(11): 2195-2200. SHEN Caihua, ZHANG Bing, WANG Wenwu. A new accelerated creep constitutive model based on the strain energy theory[J]. Journal of China Coal Society, 2014, 39(11): 2195-2200. (in Chinese)
[28] 蒋邦友, 谭云亮, 王连国, 等. 基于Mogi-Coulomb准则的弹塑性损伤本构模型及其数值实现[J]. 中国矿业大学学报, 2019, 48(4): 784-792. JIANG Bangyou, TAN Yunliang, WANG Lianguo, et al. Development and numerical implementation of elastoplastic damage constitutive model for rock based on Mogi-Coulomb criterion[J]. Journal of China University of Ming & Technology, 2019, 48(4): 784-792. (in Chinese)
[29] REN C H, YU J, CAI Y Y, et al. A novel constitutive model with plastic internal and damage variables for brittle rocks[J]. Engineering Fracture Mechanics, 2021, 248: 107731.
[30] REN C H, YU J, LIU X Y, et al. Cyclic constitutive equations of rock with coupled damage induced by compaction and cracking[J]. International Journal of Mining Science and Technology, 2022, 32(5): 1153-1165.
[31] REN C H, YU J, LIU S Y, et al. A plastic strain-induced damage model of porous rock suitable for different stress paths[J]. Rock Mechanics and Rock Engineering, 2022, 55(4): 1887-1906.
[32] YAO W, YU J, LIU X Y, et al. Experimental and theoretical investigation of coupled damage of rock under combined disturbance[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 164: 105355.
[33] COOK N G W. Natural joints in rock: Mechanical, hydraulic and seismic behaviour and properties under normal stress[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(3): 198-223.
[34] 张玉军, 琚晓冬. 双重孔隙-裂隙岩体中地下洞室稳定性的瞬弹-黏弹-黏塑性二维有限元分析[J]. 中国科学, 2016, 46(3): 276-285. ZHANG Yujun, JU Xiaodong. 2D transient elastic- viscoelastic-viscoplastic FEM analyses for stability of underground cavern located in dual-pore-fracture rock mass[J]. Scientia Sinica Technologica, 2016, 46(3): 276-285. (in Chinese)
[35] 刘才华, 陈从新. 三轴应力作用下岩石单裂隙的渗流特性[J]. 自然科学进展, 2007, 17(7): 989-994. LIU Caihua, CHEN Congxin. Scepage characteristics of rcok single fracture under triaxial stress[J]. Progress in Natural Science, 2007, 17(7): 989-994. (in Chinese)
[36] 孔洋, 朱珍德, 阮怀宁. 三向应力作用下节理岩体渗流-应力耦合特性[J]. 岩土力学, 2018, 39(6): 2008-2016. KONG Yang, ZHU Zhende, RUAN Huaining. Stress- seepage coupling characteristics of jointed rock mass under three principal stresses[J]. Rock and Soil Mechanics, 2018, 39(6): 2008-2016. (in Chinese)
[37] 蒋长宝, 余塘, 段敏克, 等. 瓦斯压力和应力对裂隙影响下的渗透率模型研究[J]. 煤炭科学技术, 2021, 49(2): 115-121. JIANG Changbao, YU Tang, DUAN Minke, et al. Study on permeability model under the influence of gas pressure and stress on fracture[J]. Coal Science and Technology, 2021, 49(2): 115-121. (in Chinese)
-
期刊类型引用(1)
1. 梁靖宇,齐吉琳,张跃东,路德春,李昊雯. 考虑温度与围压影响的冻结砂土非正交弹塑性本构模型. 岩土工程学报. 2024(09): 1889-1898 . 本站查看
其他类型引用(5)