微生物砂浆与岩石界面的剪切强度及胶结特性

    邵光辉, 孔祥泰, 陈海涛, 黄容聘, 狄志强, 刘鹏

    邵光辉, 孔祥泰, 陈海涛, 黄容聘, 狄志强, 刘鹏. 微生物砂浆与岩石界面的剪切强度及胶结特性[J]. 岩土工程学报, 2025, 47(6): 1142-1151. DOI: 10.11779/CJGE20240253
    引用本文: 邵光辉, 孔祥泰, 陈海涛, 黄容聘, 狄志强, 刘鹏. 微生物砂浆与岩石界面的剪切强度及胶结特性[J]. 岩土工程学报, 2025, 47(6): 1142-1151. DOI: 10.11779/CJGE20240253
    SHAO Guanghui, KONG Xiangtai, CHEN Haitao, HUANG Rongpin, DI Zhiqiang, LIU Peng. Shear strength and cementation characteristics of interface between microbial mortar and rock[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1142-1151. DOI: 10.11779/CJGE20240253
    Citation: SHAO Guanghui, KONG Xiangtai, CHEN Haitao, HUANG Rongpin, DI Zhiqiang, LIU Peng. Shear strength and cementation characteristics of interface between microbial mortar and rock[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1142-1151. DOI: 10.11779/CJGE20240253

    微生物砂浆与岩石界面的剪切强度及胶结特性  English Version

    基金项目: 

    国家自然科学基金项目 51578293

    国家自然科学基金项目 51809139

    详细信息
      作者简介:

      邵光辉(1973—),男,博士,教授,博士生导师,主要研究方向为环境岩土和微生物岩土工程。E-mail: gh_shao@njfu.edu.cn

    • 中图分类号: TU452

    Shear strength and cementation characteristics of interface between microbial mortar and rock

    • 摘要: 客土喷播复绿高陡裸岩坡面时喷播土体易于剥落,在裸岩表面喷覆微生物砂浆具有提高喷播土体与岩面附着力和稳定性的应用潜力。为此,开展微生物砂浆胶结石灰岩界面剪切试验,研究微生物砂浆与岩石界面的剪切强度变化规律和胶结作用机理。结果表明,胶结后的微生物砂浆-岩石界面的黏聚力和摩擦角分别可达到45.6 kPa和26.40˚,微生物矿化胶结对界面的摩擦角影响不大。微生物砂浆的崩解率与碳酸钙生成量呈负指数幂相关,当碳酸钙生成量高于2.5%时,微生物砂浆具有较好的水稳定性。岩面上覆微生物砂浆中具有丰富的孔隙结构,界面剪切破坏主要是砂颗粒与碳酸钙结晶体的接触面剥离,以及碳酸钙结晶集合体内部断裂。研究结果可为微生物岩土技术应用于岩质边坡的生态防护工程提供参考。
      Abstract: The soil is easy to peel off when the external-soil spray seeding (ESSS) technology is used to restore the high and steep bare rock slope. The application of microbial mineralization technology to form microbial mortar on bare rock surface has the potential to improve the adhesion and stability of sprayed soil substrate and rock surface. The interfacial shear tests on the limestone cemented by microbial mortar are carried out to investigate the change of shear strength and cementation mechanism of the interface between microbial mortar and rock. The results show that the cohesion and friction angle of the microbial mortar-rock interface can reach 45.6 kPa and 26.40˚, respectively. The microbial cementation has few effects on the friction angle of the interface. When the calcium carbonate content is higher than 2.5%, the microbial mortar has better water stability. There are abundant pore in the microbial mortar overlying the rock surface. The shear failure of interface is mainly caused by the peeling of the contact surface between the sand particles and the calcium carbonate crystals, and the internal fracture of the calcium carbonate crystal aggregate. The research results can provide reference for the application of microbial geotechnical technology in the ecological protection of rock slopes.
    • 图  1   岩面上微生物砂浆层的作用示意图[8]

      Figure  1.   Schematic diagram of microbial mortar layer on rock surface[8]

      图  2   砂的级配曲线

      Figure  2.   Grain-size distribution curve of sand

      图  3   制样与试验装置示意图

      Figure  3.   Schematic diagram of sample preparation and test devices

      图  4   剪切破坏形态

      Figure  4.   Forms of shear failure

      图  5   微生物砂浆和及其与岩石界面抗剪强度指标对比

      Figure  5.   Comparison of shear strength properties of microbial mortar and its interface with rock

      图  6   抗剪强度指标与碳酸钙生成量的关系

      Figure  6.   Relationship between shear strength properties and calcium carbonate content

      图  7   碳酸钙生成量与钙离子转化效率

      Figure  7.   Calcium carbonate contents and conversion efficiencies of calcium ion

      图  8   喷洒次数和胶结液浓度对崩解率的影响

      Figure  8.   Effects of spraying times and cementing solution concentration on disintegration ratio

      图  9   崩解率与碳酸钙生成量的关系

      Figure  9.   Relationship between disintegration ratio and calcium carbonate production

      图  10   界面胶结的微观结构(J2-1.0mol/L-1)

      Figure  10.   Microscopic structure of interface cementation(J2-1.0 mol/L-1)

      图  11   界面剪切破坏的微观形貌(J2-1.0mol/L-2)

      Figure  11.   Microscopic structure of interface cementation (J2-1.0mol/L-2)

      图  12   微生物砂浆-岩石界面作用示意图

      Figure  12.   Schematic diagram of interface between microbial mortar and rock

      表  1   试验方案

      Table  1   Experimental design

      试样组号 胶结液浓度/(mol·L-1) 胶结液喷洒次数
      J0~J3 0.75,1.00,1.25,1.50 0,1,2,3
      N0~N3 0.75,1.00,1.25,1.50 0,1,2,3
      注:①J表示试样为微生物砂浆-岩石界面直剪试样,N表示试样为微生物砂浆直剪试样;②试样组号中的数字表示胶结液喷洒次数,当胶结液喷洒次数为0时,表示仅在试样装入模具前拌合菌液和胶结液,此后未再喷洒胶结液。
      下载: 导出CSV
    • [1] 张家明, 陈积普, 杨继清, 等. 中国岩质边坡植被护坡技术研究进展[J]. 水土保持学报, 2019, 33(5): 1-7.

      ZHANG Jiaming, CHEN Jipu, YANG Jiqing, et al. Advances in biological protection of rock slopes in China[J]. Journal of Soil and Water Conservation, 2019, 33(5): 1-7. (in Chinese)

      [2] 高小虎, 李帅, 李本鹏, 等. 硬质岩石边坡适生环境分析与植被恢复设计研究[J]. 环境科学与管理, 2023, 48(9): 141-145. doi: 10.3969/j.issn.1673-1212.2023.09.028

      GAO Xiaohu, LI Shuai, LI Benpeng, et al. Analysis of suitable growth environment and design of vegetation restoration for hard rock slope[J]. Environmental Science and Management, 2023, 48(9): 141-145. (in Chinese) doi: 10.3969/j.issn.1673-1212.2023.09.028

      [3] 田占良. 基于非污染矿山高陡边坡微地形的多种客土喷播技术应用研究[J]. 中国矿业, 2022, 31(2): 86-91.

      TIAN Zhanliang. Research on the application of multiple guest soil spray seeding techniques based on the micro-topography of high and steep slopes in non-polluted mines[J]. China Mining Magazine, 2022, 31(2): 86-91. (in Chinese)

      [4] 梅红, 赵洪岩, 李明阳, 等. 剑麻纤维复合基材土岩界面剪切性能试验[J]. 河海大学学报(自然科学版), 2023, 51(5): 79-86.

      MEI Hong, ZHAO Hongyan, LI Mingyang, et al. Experimental study on shear properties of soil-rock interface of sisal fiber composite material[J]. Journal of Hohai University (Natural Sciences), 2023, 51(5): 79-86. (in Chinese)

      [5] 刘汉龙, 赵常, 肖杨. 微生物矿化反应原理、沉积与破坏机制及理论: 研究进展与挑战[J]. 岩土工程学报, 2024, 46(7): 1347-1358. doi: 10.11779/CJGE20230004

      LIU Hanlong, ZHAO Chang, XIAO Yang. Reaction principles, deposition and failure mechanisms and theories of biomineralization: progress and challenges[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1347-1358. (in Chinese) doi: 10.11779/CJGE20230004

      [6]

      LIU H L, CHU J, KAVAZANJIAN E. Biogeotechnics: a new frontier in geotechnical engineering for sustainability[J]. Biogeotechnics, 2023, 1: 100001. doi: 10.1016/j.bgtech.2023.100001

      [7] 肖维民, 傅业姗, 朱占元, 等. 微生物诱导碳酸钙沉积胶结岩石节理的抗剪强度特性试验研究[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2750-2759.

      XIAO Weimin, FU Yeshan, ZHU Zhanyuan, et al. Experimental study on the shear strength of rock joints reinforced by microbially induced carbonate precipitation method[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2750-2759. (in Chinese)

      [8] 陈海涛. 裸岩喷播岩-土界面微生物砂浆黏结层试验研究[D]. 南京: 南京林业大学, 2022.

      CHEN Haitao. Experimental Study on Microbial Mortar Bonding Layer at Rock Soil Interface Sprayed in Bare Rock[D]. Nanjing: Nanjing Forestry University, 2022. (in Chinese)

      [9] 夏冬, 李富平, 袁雪涛, 等. 露天矿岩质边坡生态重建技术研究现状及发展趋势[J]. 金属矿山, 2018(1): 1-10.

      XIA Dong, LI Fuping, YUAN Xuetao, et al. Research situation of ecological rehabilitation technology in rock open-pit mine and its developing trend[J]. Metal Mine, 2018(1): 1-10. (in Chinese)

      [10] 陈世江, 朱万成, 王创业, 等. 岩体结构面粗糙度系数定量表征研究进展[J]. 力学学报, 2017, 49(2): 239-256.

      CHEN Shijiang, ZHU Wancheng, WANG Chuangye, et al. Review of research progresses of the quantifying joint roughness coefficient[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 239-256. (in Chinese)

      [11]

      LIAN J J, XU H Y, HE X Q, et al. Biogrouting of hydraulic fill fine sands for reclamation projects[J]. Marine Georesources & Geotechnology, 2019, 37(2): 212-222.

      [12]

      FENG D L, WANG Y X, CHEN D Y, et al. Experimental study on the influence mechanism of clay particles on the microbial treatment of granite residual soil[J]. Construction and Building Materials, 2024, 411: 134659. doi: 10.1016/j.conbuildmat.2023.134659

      [13] 刘仁旭, 彭正勇, 卢江华, 等. 基于岩面粗糙度分形维数的岩面-喷混界面黏结力试验研究[J]. 公路, 2022, 67(10): 447-452.

      LIU Renxu, PENG Zhengyong, LU Jianghua, et al. Experimental study of rock-shotcrete interface cohesion based on rock surface roughness fractal dimension[J]. Highway, 2022, 67(10): 447-452. (in Chinese)

      [14]

      CUI M J, ZHENG J J, ZHANG R J, et al. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971-986. doi: 10.1007/s11440-017-0574-9

      [15] 王双娇, 李志清, 田怡帆, 等. 微生物岩土工程技术的过去、现在与未来[J]. 工程地质学报, 2024, 32(1): 236-264.

      WANG Shuangjiao, LI Zhiqing, TIAN Yifan, et al. The past, present and future of technology in microbial geotechnical engineering[J]. Journal of Engineering Geology, 2024, 32(1): 236-264. (in Chinese)

      [16]

      TERZIS D, BERNIER-LATMANI R, LALOUI L. Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions[J]. Géotechnique Letters, 2016, 6(1): 50-57. doi: 10.1680/jgele.15.00134

      [17]

      SHARMA M, SATYAM N, REDDY K R. Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(3): 705-716. doi: 10.1016/j.jrmge.2020.11.006

      [18]

      HATAF N, JAMALI R. Effect of fine-grain percent on soil strength properties improved by biological method[J]. Geomicrobiology Journal, 2018, 35(8): 695-703. doi: 10.1080/01490451.2018.1454554

      [19]

      LIU L, LIU H L, STUEDLEIN A W, et al. Strength, stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(10): 1502-1513.

      [20]

      CUI M J, ZHENG J J, CHU J, et al. Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand[J]. Acta Geotechnica, 2021, 16(5): 1377-1389. http://www.zhangqiaokeyan.com/journal-foreign-detail/0704069737410.html

      [21] 李中义, 邵光辉, 马志刚. 微生物固化粉土坡面的植物适生性研究[J]. 林业工程学报, 2020, 5(2): 158-163.

      LI Zhongyi, SHAO Guanghui, MA Zhigang. Plant adaptability of silty soil slope protected by microbial solidification[J]. Journal of Forestry Engineering, 2020, 5(2): 158-163. (in Chinese)

    图(12)  /  表(1)
    计量
    • 文章访问数:  295
    • HTML全文浏览量:  39
    • PDF下载量:  90
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-03-24
    • 网络出版日期:  2024-09-28
    • 刊出日期:  2025-05-31

    目录

      /

      返回文章
      返回