Experimental study on remediation of cadmium-contaminated tailings using microbial-induced carbonate precipitation
-
摘要: 微生物诱导的碳酸钙沉淀(MICP)是修复重金属污染场地的有效技术。采用巴氏芽孢杆菌对镉污染尾矿进行固化修复试验,研究了胶结次数、细菌浓度、胶结液浓度、温度对镉污染尾矿浸出特性的影响,结合微生物群落结构变化、微观分析揭示了MICP修复污染土机制。结果表明:经过12次MICP处理后能有效钝化尾矿中的Cd2+,在30℃、OD600=1.5、胶结液浓度为0.5 mol/L条件下诱导生成的合适晶体尺寸的碳酸钙能在尾矿孔隙中均匀分布,碳酸钙中结构稳定的方解石含量较高,处理后尾矿中八叠球菌属丰度达到78.68%,固化与修复效果较好。MICP通过生物吸附、生物沉淀、碳酸钙吸附、晶格掺杂(包括取代掺杂和间隙掺杂)以及共沉淀作用,完成了对重金属的有效钝化。研究结果对优化MICP技术及其应用于重金属污染土修复具有重要意义。
-
关键词:
- 微生物诱导碳酸钙沉淀 /
- 镉 /
- 浸出特性 /
- 污染修复 /
- 钝化机制
Abstract: The microbial-induced calcium carbonate precipitation (MICP) is recognized as a promising method for remediating the sites contaminated with heavy metals. The remediation potential of cadmium (Cd)-contaminated tailings using Sporosarcina pasteurii is investigated, assessing the effects of cementation frequency, bacterial concentration, cementation solution concentration and temperature on the leaching properties of tailings. The analyses of microbial community structure shifts and microanalytical techniques are integrated to elucidate the MICP mechanisms in soil remediation. The results demonstrate effective cadmium (Cd2+) passivation after 12 MICP treatments. The optimal conditions for calcium carbonate formation include 30 ℃ temperature, OD600=1.5 bacterial concentration, and a cementation solution concentration of 0.5 mol/L, ensuring uniform dispersion within pores of tailings. The predominant calcium carbonate form is structurally stable calcite, with Bacterium octococcum spp. comprising 78.68% of the remediated tailings, confirming successful solidification and remediation. The MICP achieves heavy metal passivation through the mechanisms such as biosorption, bioprecipitation, calcium carbonate adsorption, lattice doping (including substitution and interstitial doping) and co-precipitation. The results are of great significance for the optimization of the MICP technology and its application in the remediation of heavy metal-contaminated soils. -
-
表 1 尾矿砂主要化学成分
Table 1 Main components of tailings sand
单位:% K2O TiO2 Na2O CaO MgO Al2O3 Fe2O3 SiO2 1.42 1.73 5.02 5.55 5.72 15.07 19.95 43.85 表 2 Cd污染尾矿修复方案
Table 2 Remediation programme of Cd-contaminated tailings
因素变量 变量范围 其他条件 胶结次数 4,6,8,10,12 30℃、OD600=2.0、胶结液浓度0.5 mol/L 温度/℃ 20,30,40 胶结12次、OD600=2.0、胶结液浓度0.5 mol/L 细菌浓度(OD600) 0.5,1.0,1.5,2.0 胶结12次、30℃、胶结液浓度0.5 mol/L 胶结液浓度/(mol·L-1) 0.25,0.50,0.75,1.00 胶结12次、30℃、OD600=2.0 表 3 微生物群落结构变化试验方案
Table 3 Test scheme of change of microbial community structure
编号 组名 试验操作 A 巴氏芽孢杆菌对照组 OD600 > 2.0菌液在4000 r/min下离心20 min得到的菌种沉淀 B1 尾砂对照组 500 g尾砂经过7 d的每日100 mL蒸馏水持续灌入 B2 生物刺激组 500 g尾砂经过7 d的每日100 mL灭菌后的CASO培养基持续灌入 B3 菌液修复组 500 g尾砂经过7 d的每日50 mL OD600约为2.0菌液以及50 mL 0.5 mol/L胶结液持续灌入 表 4 菌群微生物多样性指数表
Table 4 Microbial diversity indices of flora
样品 Chao1 Simpson指数 Shannon指数 均匀度指数 微生物覆盖率 A 48.61 0.221 0.689 0.129 0.9997 B1 939.3 0.948 6.836 0.696 0.9973 B2 508.3 0.963 6.025 0.670 0.9996 B3 59.56 0.517 1.997 0.341 0.9998 -
[1] QIAO S Y, ZENG G Q, WANG X T, et al. Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration[J]. Chemosphere, 2021, 274: 129661. doi: 10.1016/j.chemosphere.2021.129661
[2] XUE Z F, CHENG W C, WANG L, et al. Revealing degradation and enhancement mechanisms affecting copper (Cu) immobilization using microbial-induced carbonate precipitation (MICP)[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108479. doi: 10.1016/j.jece.2022.108479
[3] NORDBERG G F. Historical perspectives on cadmium toxicology[J]. Toxicology and Applied Pharmacology, 2009, 238(3): 192-200. doi: 10.1016/j.taap.2009.03.015
[4] LYU C H, QIN Y J, CHEN T, et al. Microbial induced carbonate precipitation contributes to the fates of Cd and Se in Cd-contaminated seleniferous soils[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 126977.
[5] KUMARI D, PAN X L, LEE D J, et al. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature[J]. International Biodeterioration & Biodegradation, 2014, 94: 98-102.
[6] LIAO Z S, WU S J, XIE H, et al. Effect of phosphate on cadmium immobilized by microbial-induced carbonate precipitation: mobilization or immobilization?[J]. Journal of Hazardous Materials, 2023, 443(Pt B): 130242.
[7] ZENG Y, CHEN Z Z, LYU Q Y, et al. Microbiologically induced calcite precipitation for in situ stabilization of heavy metals contributes to land application of sewage sludge[J]. Journal of Hazardous Materials, 2023, 441: 129866. doi: 10.1016/j.jhazmat.2022.129866
[8] CUI M J, ZHENG J J, ZHANG R J, et al. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971-986. doi: 10.1007/s11440-017-0574-9
[9] WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Murdoch University, 2004.
[10] FANG L Y, NIU Q J, CHENG L, et al. Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii[J]. Science of the Total Environment, 2021, 787: 147627. doi: 10.1016/j.scitotenv.2021.147627
[11] 童天志, 缪林昌, 孙潇昊, 等. 低温条件微生物沉积碳酸钙试验研究[J]. 硅酸盐通报, 2018, 37(5): 1509-1514. TONG Tianzhi, MIAO Linchang, SUN Xiaohao, et al. Microbially-induced carbonate precipitation in low temperature[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(5): 1509-1514. (in Chinese)
[12] 江昭明, 陈永贵, 文子豪, 等. pH值对MICP固化修复镉污染尾矿的影响研究[J]. 岩土工程学报, 2025, 47(1): 38-47. doi: 10.11779/CJGE20231051 JIANG Zhaoming, CHEN Yonggui, WEN Zihao, et al. Study on the effect of pH on MICP curing of cadmium contaminated tailings[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 38-47. (in Chinese) doi: 10.11779/CJGE20231051
[13] CÖLFEN H, ANTONIETTI M. Mesocrystals and Nonclassical Crystallization[M]. UK: Wiley, 2008.
[14] WANG Y Z, SOGA K, DEJONG J T, et al. Microscale visualization of microbial-induced calcium carbonate precipitation processes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019045. doi: 10.1061/(ASCE)GT.1943-5606.0002079
[15] ZHANG J H, SHI X Z, CHEN X, et al. Microbial-induced carbonate precipitation: a review on influencing factors and applications[J]. Advances in Civil Engineering, 2021, 2021(1): 9974027. doi: 10.1155/2021/9974027
[16] 成亮, 钱春香, 王瑞兴, 等. 碳酸岩矿化菌诱导碳酸钙晶体形成机理研究[J]. 化学学报, 2007, 65(19): 2133-2138. CHENG Liang, QIAN Chunxiang, WANG Ruixing, et al. Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J]. Acta Chimica Sinica, 2007, 65(19): 2133-2138. (in Chinese)
[17] LV C, TANG C S, ZHU C, et al. Environmental dependence of microbially induced calcium carbonate crystal precipitations: experimental evidence and insights[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(7): 04022050. doi: 10.1061/(ASCE)GT.1943-5606.0002827
[18] DOELMAN P, HAANSTRA L. Short- and long-term effects of heavy metals on urease activity in soils[J]. Biology and Fertility of Soils, 1986, 2(4): 213-218.
[19] HENRY-TENG H, ZHAO L. Surface behavior of calcite upon uptake of Cd2+ and Pb2+[J]. Geological Journal of China Universities, 2012, 18(2): 193-202.
[20] ZHENG T W, QIAN C X. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase[J]. Process Biochemistry, 2020, 91: 271-281. doi: 10.1016/j.procbio.2019.12.018
[21] ANBU P, KANG C H, SHIN Y J, et al. Formations of calcium carbonate minerals by bacteria and its multiple applications[J]. SpringerPlus, 2016, 5: 250. doi: 10.1186/s40064-016-1869-2
[22] QABANY A A, SOGA K. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Géotechnique, 2013, 63(4): 331-339. doi: 10.1680/geot.SIP13.P.022
[23] FERRIS F G, PHOENIX V, FUJITA Y, et al. Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20℃ in artificial groundwater[J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1701-1710. doi: 10.1016/S0016-7037(03)00503-9
[24] CHENG L, SHAHIN M A, MUJAH D. Influence of key environmental conditions on microbially induced cementation for soil stabilization[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1): 04016083. doi: 10.1061/(ASCE)GT.1943-5606.0001586
[25] BAI Y H, CHANG Y Y, LIANG J S, et al. Treatment of groundwater containing Mn(Ⅱ), Fe(Ⅱ), As(Ⅲ) and Sb(Ⅲ) by bioaugmented quartz-sand filters[J]. Water Research, 2016, 106: 126-134. doi: 10.1016/j.watres.2016.09.040
[26] NAVARRO-TORRE S, BARCIA-PIEDRAS J M, CAVIEDES M A, et al. Bioaugmentation with bacteria selected from the microbiome enhances arthrocnemum macrostachyum metal accumulation and tolerance[J]. Marine Pollution Bulletin, 2017, 117(1/2): 340-347.
[27] ZHU Y, LI Y Z, DING H R, et al. Multifactor-controlled mid-infrared spectral and emission characteristic of carbonate minerals (MCO3, M = Mg, Ca, Mn, Fe)[J]. Physics and Chemistry of Minerals, 2021, 48(4).
[28] XUE Z F, CHENG W C, WANG L, et al. Applying the first microcapsule-based self-healing microbial-induced calcium carbonate materials to prevent the migration of Pb ions[J]. Environmental Research, 2023, 239(Pt 2): 117423.
[29] QIAN X Y, FANG C L, HUANG M S, et al. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil[J]. Journal of Cleaner Production, 2017, 164: 198-208.
[30] ZHU X J, LI W L, ZHAN L, et al. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil[J]. Environmental Pollution, 2016, 219: 149-155.
[31] LYU J J, LI F C, ZHANG C H, et al. From the inside out: elemental compositions and mineral phases provide insights into bacterial calcification[J]. Chemical Geology, 2021, 559: 119974.
[32] DAVID M, KRISHNA P M, SANGEETHA J. Elucidation of impact of heavy metal pollution on soil bacterial growth and extracellular polymeric substances flexibility[J]. 3 Biotech, 2016, 6(2).
[33] FERREIRA M L, GERBINO E, CAVALLERO G J, et al. Infrared spectroscopy with multivariate analysis to interrogate the interaction of whole cells and secreted soluble exopolimeric substances of Pseudomonas veronii 2E with Cd(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ)[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2020, 228: 117820.
[34] MA L, PANG A P, LUO Y S, et al. Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii[J]. Microbial Cell Factories, 2020, 19(1).
[35] ELIZABETH GEORGE S, WAN Y. Advances in characterizing microbial community change and resistance upon exposure to lead contamination: implications for ecological risk assessment[J]. Critical Reviews in Environmental Science and Technology, 2019, 50(21): 2223-2270.
[36] ZHAO W Y, DENG J B, CHI S L, et al. Sustainability assessment of topsoil ecology in Chongqing, China based on the application of livestock and poultry manure[J]. Journal of Cleaner Production, 2022, 358: 131969.
[37] GUPTA P, DIWAN B. Bacterial Exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies[J]. Biotechnology Reports, 2016, 13: 58-71.
[38] MUGWAR A J, HARBOTTLE M J. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation [J]. Journal of Hazardous Materials, 2016, 314: 237-248.
[39] ZHOU Z, XU Z H, FENG Q J, et al. Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar[J]. Journal of Cleaner Production, 2018, 187: 996-1005.
[40] TRUSHINA D B, BUKREEVA T V, KOVALCHUK M V, et al. CaCO₃ vaterite microparticles for biomedical and personal care applications[J]. Materials Science & Engineering C, Materials for Biological Applications, 2014, 45: 644-658.
[41] BAI H, LIU D, ZHENG W L, et al. Microbially-induced calcium carbonate precipitation by a halophilic ureolytic bacterium and its potential for remediation of heavy metal-contaminated saline environments[J]. International Biodeterioration and Biodegradation, 2021, 165: 105311.
-
其他相关附件