微生物诱导碳酸盐沉淀修复镉污染尾矿试验研究

    Experimental study on remediation of cadmium-contaminated tailings using microbial-induced carbonate precipitation

    • 摘要: 微生物诱导的碳酸钙沉淀(MICP)是修复重金属污染场地的有效技术。采用巴氏芽孢杆菌对镉污染尾矿进行固化修复试验,研究了胶结次数、细菌浓度、胶结液浓度、温度对镉污染尾矿浸出特性的影响,结合微生物群落结构变化、微观分析揭示了MICP修复污染土机制。结果表明:经过12次MICP处理后能有效钝化尾矿中的Cd2+,在30℃、OD600=1.5、胶结液浓度为0.5 mol/L条件下诱导生成的合适晶体尺寸的碳酸钙能在尾矿孔隙中均匀分布,碳酸钙中结构稳定的方解石含量较高,处理后尾矿中八叠球菌属丰度达到78.68%,固化与修复效果较好。MICP通过生物吸附、生物沉淀、碳酸钙吸附、晶格掺杂(包括取代掺杂和间隙掺杂)以及共沉淀作用,完成了对重金属的有效钝化。研究结果对优化MICP技术及其应用于重金属污染土修复具有重要意义。

       

      Abstract: The microbial-induced calcium carbonate precipitation (MICP) is recognized as a promising method for remediating the sites contaminated with heavy metals. The remediation potential of cadmium (Cd)-contaminated tailings using Sporosarcina pasteurii is investigated, assessing the effects of cementation frequency, bacterial concentration, cementation solution concentration and temperature on the leaching properties of tailings. The analyses of microbial community structure shifts and microanalytical techniques are integrated to elucidate the MICP mechanisms in soil remediation. The results demonstrate effective cadmium (Cd2+) passivation after 12 MICP treatments. The optimal conditions for calcium carbonate formation include 30 ℃ temperature, OD600=1.5 bacterial concentration, and a cementation solution concentration of 0.5 mol/L, ensuring uniform dispersion within pores of tailings. The predominant calcium carbonate form is structurally stable calcite, with Bacterium octococcum spp. comprising 78.68% of the remediated tailings, confirming successful solidification and remediation. The MICP achieves heavy metal passivation through the mechanisms such as biosorption, bioprecipitation, calcium carbonate adsorption, lattice doping (including substitution and interstitial doping) and co-precipitation. The results are of great significance for the optimization of the MICP technology and its application in the remediation of heavy metal-contaminated soils.

       

    /

    返回文章
    返回