• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

生物炭-铁锰氧化物复合材料修复As(Ⅲ)污染土

张文杰, 李西斌, 黄津祥

张文杰, 李西斌, 黄津祥. 生物炭-铁锰氧化物复合材料修复As(Ⅲ)污染土[J]. 岩土工程学报, 2025, 47(6): 1327-1333. DOI: 10.11779/CJGE20240209
引用本文: 张文杰, 李西斌, 黄津祥. 生物炭-铁锰氧化物复合材料修复As(Ⅲ)污染土[J]. 岩土工程学报, 2025, 47(6): 1327-1333. DOI: 10.11779/CJGE20240209
ZHANG Wenjie, LI Xibin, HUANG Jinxiang. Remediation of As(Ⅲ)-contaminated soils using Fe-Mn oxides-modified biochar[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1327-1333. DOI: 10.11779/CJGE20240209
Citation: ZHANG Wenjie, LI Xibin, HUANG Jinxiang. Remediation of As(Ⅲ)-contaminated soils using Fe-Mn oxides-modified biochar[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1327-1333. DOI: 10.11779/CJGE20240209

生物炭-铁锰氧化物复合材料修复As(Ⅲ)污染土  English Version

基金项目: 

国家自然科学基金项目 52478353

国家自然科学基金项目 52078467

详细信息
    作者简介:

    张文杰(1978—),男,博士,教授,主要从事环境岩土工程方面的研究工作。E-mail: zhwjlyl@163.com

    通讯作者:

    李西斌, E-mail: ytulxb@zafu.edu.cn

  • 中图分类号: TU411

Remediation of As(Ⅲ)-contaminated soils using Fe-Mn oxides-modified biochar

  • 摘要: 生物炭(BC)已被广泛应用于重金属污染水土修复,但由于土中As(Ⅲ)以络阴离子形式存在,易与生物炭产生静电排斥,直接使用生物炭进行稳定化的效果不佳。制成生物炭-铁锰氧化物复合材料(FMO-BC)修复As(Ⅲ)污染土,利用锰氧化物将As(Ⅲ)氧化为低移动性的As(Ⅴ),通过铁氧化物进行稳定化,并通过生物炭负载的方式解决铁锰氧化物(FMO)易团聚的问题。通过合成沉降淋滤试验、生物有效性试验、连续提取试验和光谱分析研究了FMO-BC修复As(Ⅲ)污染土的效果和机理。结果表明,FMO-BC的修复效果显著优于同掺量的FMO,7%的FMO-BC掺量下As稳定化效率达到98.6%;FMO经BC负载后具有更多活性点位可与As反应,从而降低了As的生物有效性;由于FMO和生物炭的中和作用,掺入FMO-BC后土体pH不会显著升高,从而避免了高pH导致的As浸出;FMO-BC修复后更多As被转化为稳定形态,环境风险大大降低;FMO-BC可将86.9%的As(Ⅲ)氧化为As(Ⅴ),FMO-BC主要通过氧化、吸附、络合和沉淀反应实现As稳定化。
    Abstract: The biochar (BC) has been widely used in treatment of heavy metals-contaminated water and soil. However, it is not effective in stabilizing As(Ⅲ) in soils due to the electrostatic repulsion between the biochar and the anion group As. The iron-manganese oxides-modified biochar (FMO-BC) is proposed for remediation of As(Ⅲ)-contaminated soils. The manganese oxide can oxidize As(Ⅲ) into less mobile As(Ⅴ), and the iron oxide can stabilize As(Ⅴ), while the biochar loading can avoid the aggregation of iron-manganese oxides (FMO). The remediation effectiveness and mechanisms are investigated through the synthetic precipitation leaching procedure, bioavailability tests, sequential extraction procedure and a series of spectroscopic/microscopic analyses. The results show that the remediation of FMO-BC is significantly more effective than FMO. At a 7% FMO-BC dosage, the stabilization efficiency reaches 98.6%. After the biochar support, more active sites are obtained for FMO to react with As, and therefore the bioavailability is reduced. The neutralizing actions of that of FMO with biochar avoids a significant increase in soil pH, thereby reduces the As leaching associated with high pH. A lot of As is transformed into stable forms after the FMO-BC remediation, thus reducing the environmental risks of As. 86.9% of As(Ⅲ) is oxidized to As(Ⅴ) by FMO-BC. The oxidation, adsorption, complexation and precipitation reactions are the main mechanisms involved in As stabilization.
  • 图  1   修复后As的SPLP浸出浓度

    Figure  1.   Concentrations of As after remediation using synthetic precipitation leaching procedure

    图  2   修复后土中As的生物有效性

    Figure  2.   Bioavailability of As after remediation

    图  3   修复后土样的pH

    Figure  3.   pH of treated soil

    图  4   修复后土中As的形态分布

    Figure  4.   Speciation of As after remediation

    图  5   BC、FMO和FMO-BC的SEM和EDS图谱

    Figure  5.   SEM and EDS images of BC, FMO and FMO-BC

    图  6   修复前后FMO-BC的XRD图谱

    Figure  6.   XRD patterns of FMO-BC before and after remediation

    图  7   修复土样前后FMO-BC的XPS图谱

    Figure  7.   XPS spectra of FMO-BC before and after remediation

    表  1   原土中的金属元素含量

    Table  1   Metal contents in original soil (单位: mg·kg-1)

    金属元素 Ca Mg Al As Fe Mn
    含量 9650 2470 67700 8.9 13100 2470
    下载: 导出CSV
  • [1]

    ZHOU S J, DU Y J, SUN H Y, et al. Evaluation of the effectiveness of ex-situ stabilization for arsenic and antimony contaminated soil: short-term and long-term leaching characteristics[J]. The Science of the Total Environment, 2022, 848: 157646. doi: 10.1016/j.scitotenv.2022.157646

    [2]

    LIU X M, SONG Q J, TANG Y, et al. Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis[J]. The Science of the Total Environment, 2013, 463/464: 530-540. doi: 10.1016/j.scitotenv.2013.06.064

    [3] 周实际, 杜延军, 倪浩, 等. 压实度对铁盐稳定化砷、锑污染土特性的影响及机制研究[J]. 岩土力学, 2022, 43(2): 432-442.

    ZHOU Shiji, DU Yanjun, NI Hao, et al. Mechanisms analysis of the effect of compaction degree on the properties of arsenic and antimony co-contaminated soil stabilized by ferric salts[J]. Rock and Soil Mechanics, 2022, 43(2): 432-442. (in Chinese)

    [4] 张文杰, 余海生, 蒋墨翰. 预氧化-稳定化-固化联合修复As(Ⅲ)污染土[J]. 岩土工程学报, 2023, 45(6): 1231-1239. doi: 10.11779/CJGE20220279

    ZHANG Wenjie, YU Haisheng, JIANG Mohan. Combined remediation of As(Ⅲ)-contaminated soils by pre-oxidation, stabilization and solidification[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1231-1239. (in Chinese) doi: 10.11779/CJGE20220279

    [5]

    CUNDY A B, HOPKINSON L, WHITBY R L D. Use of iron-based technologies in contaminated land and groundwater remediation: a review[J]. The Science of the Total Environment, 2008, 400(1/2/3): 42-51.

    [6] 赵慧敏. 铁盐—生石灰对砷污染土壤固定/稳定化处理技术研究[D]. 北京: 中国地质大学(北京), 2010.

    ZHAO Huimin. Study on Fixation/Stabilization Technology of Arsenic Contaminated Soil by Iron Salt-Quicklime[D]. Beijing: China University of Geosciences, 2010. (in Chinese)

    [7]

    XENIDIS A, STOURAITI C, PAPASSIOPI N. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 929-937.

    [8]

    WU D L, ZONG Y, TIAN Z Y, et al. Role of reactive oxygen species in As(Ⅲ) oxidation by carbonate structural Fe(Ⅱ): a surface-mediated pathway[J]. Chemical Engineering Journal, 2019, 368: 980-987. doi: 10.1016/j.cej.2019.02.204

    [9]

    CHOPPALA G, BOLAN N, KUNHIKRISHNAN A, et al. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate[J]. Chemosphere, 2016, 144: 374-381. doi: 10.1016/j.chemosphere.2015.08.043

    [10]

    ZHANG G S, LIU H J, QU J H, et al. Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe-Mn binary oxides: influence of Mn/Fe ratio, pH, Ca2+, and humic acid[J]. Journal of Colloid and Interface Science, 2012, 366(1): 141-146. doi: 10.1016/j.jcis.2011.09.058

    [11]

    ZHOU Q W, LIAO B H, LIN L N, et al. Adsorption of Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by ferromanganese binary oxide-biochar composites[J]. The Science of the Total Environment, 2018, 615: 115-122. doi: 10.1016/j.scitotenv.2017.09.220

    [12]

    CAO X D, MA L N, LIANG Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J]. Environmental Science & Technology, 2011, 45(11): 4884-4889.

    [13]

    MOHAN D, JR PITTMAN C U. Arsenic removal from water/wastewater using adsorbents: a critical review[J]. Journal of Hazardous Materials, 2007, 142(1/2): 1-53.

    [14]

    HERATH I, ZHAO F J, BUNDSCHUH J, et al. Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites[J]. Journal of Hazardous Materials, 2020, 398: 123096. doi: 10.1016/j.jhazmat.2020.123096

    [15]

    LI L F, ZHU C X, LIU X S, et al. Biochar amendment immobilizes arsenic in farmland and reduces its bioavailability[J]. Environmental Science and Pollution Research International, 2018, 25(34): 34091-34102. doi: 10.1007/s11356-018-3021-z

    [16]

    YU Z H, QIU W W, WANG F, et al. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L) cultivar[J]. Chemosphere, 2017, 168: 341-349. doi: 10.1016/j.chemosphere.2016.10.069

    [17]

    WANG L W, OK Y S, TSANG D C W, et al. New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment[J]. Soil Use and Management, 2020, 36(3): 358-386. doi: 10.1111/sum.12592

    [18]

    FRESNO T, MORENO-JIMÉNEZ E, PEÑALOSA J M. Assessing the combination of iron sulfate and organic materials as amendment for an arsenic and copper contaminated soil, a chemical and ecotoxicological approach[J]. Chemosphere, 2016, 165: 539-546. doi: 10.1016/j.chemosphere.2016.09.039

    [19]

    TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017

    [20]

    LI J S, BEIYUAN J Z, TSANG D C W, et al. Arsenic-containing soil from geogenic source in Hong Kong: leaching characteristics and stabilization/solidification[J]. Chemosphere, 2017, 182: 31-39. doi: 10.1016/j.chemosphere.2017.05.019

    [21]

    WANG Y, GU K, WANG H S, et al. Remediation of heavy-metal-contaminated soils by biochar: a review[J]. Environmental Geotechnics, 2022, 9(3): 135-148.

    [22]

    DU Y J, WEI M L, REDDY K R, et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals: leaching, strength and microstructure characterization[J]. Journal of Environmental Management, 2014, 146: 179-188. doi: 10.1016/j.jenvman.2014.07.035

    [23]

    FAN J, CHEN X, XU Z B, et al. One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: arsenic immobilization associated with iron transformation[J]. Journal of Hazardous Materials, 2020, 398: 122901. doi: 10.1016/j.jhazmat.2020.122901

    [24]

    LI J S, XUE Q, FANG L, et al. Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods[J]. Waste Management, 2017, 64: 161-170. doi: 10.1016/j.wasman.2017.03.033

    [25]

    FREITAS E T F, MONTORO L A, GASPARON M, et al. Natural attenuation of arsenic in the environment by immobilization in nanostructured hematite[J]. Chemosphere, 2015, 138: 340-347. doi: 10.1016/j.chemosphere.2015.05.101

    [26]

    TU Y L, ZHAO D Y, GONG Y Y, et al. Field demonstration of on-site immobilization of arsenic and lead in soil using a ternary amending agent[J]. Journal of Hazardous Materials, 2022, 426: 127791. doi: 10.1016/j.jhazmat.2021.127791

  • 期刊类型引用(1)

    1. 裘友强,张留俊,刘洋,刘军勇,尹利华. “双碳”背景下公路软土地基处理技术研究进展. 水利水电技术(中英文). 2025(01): 113-131 . 百度学术

    其他类型引用(4)

图(7)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 5
出版历程
  • 收稿日期:  2024-03-10
  • 网络出版日期:  2024-09-28
  • 刊出日期:  2025-05-31

目录

    /

    返回文章
    返回