Processing math: 100%
  • Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

聚丙烯酸钠改性钙基膨润土工程特性及微观结构研究

陈宏信, 牛松荧, 冯世进, 薛钦培, 李正霏, 石福江

陈宏信, 牛松荧, 冯世进, 薛钦培, 李正霏, 石福江. 聚丙烯酸钠改性钙基膨润土工程特性及微观结构研究[J]. 岩土工程学报, 2025, 47(4): 860-868. DOI: 10.11779/CJGE20240103
引用本文: 陈宏信, 牛松荧, 冯世进, 薛钦培, 李正霏, 石福江. 聚丙烯酸钠改性钙基膨润土工程特性及微观结构研究[J]. 岩土工程学报, 2025, 47(4): 860-868. DOI: 10.11779/CJGE20240103
CHEN Hongxin, NIU Songying, FENG Shijin, XUE Qinpei, LI Zhengfei, SHI Fujiang. Engineering properties and microstructure of sodium polyacrylate-modified calcium bentonite[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 860-868. DOI: 10.11779/CJGE20240103
Citation: CHEN Hongxin, NIU Songying, FENG Shijin, XUE Qinpei, LI Zhengfei, SHI Fujiang. Engineering properties and microstructure of sodium polyacrylate-modified calcium bentonite[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 860-868. DOI: 10.11779/CJGE20240103

聚丙烯酸钠改性钙基膨润土工程特性及微观结构研究  English Version

基金项目: 

国家重点研发计划项目 2023YFC3707904

国家自然科学基金项目 42077250

国家自然科学基金项目 42277148

详细信息
    作者简介:

    陈宏信(1987—),男,博士,教授,主要从事环境岩土方面的教学和研究工作。E-mail: chenhongxin@tongji.edu.cn

    通讯作者:

    冯世进, Email:fsjgly@tongji.edu.cn

  • 中图分类号: TU411

Engineering properties and microstructure of sodium polyacrylate-modified calcium bentonite

  • 摘要: 中国钙基膨润土(CaB)资源丰富,近年来作为竖向隔离墙膨润土泥浆的替代材料备受关注。然而,由于天然钙基膨润土膨胀能力与化学相容性较差,对其工程特性的改进成为关键问题。为此,研究以聚丙烯酸钠(PAAS)为改性剂对钙基膨润土进行改良,确定了制浆—干燥—研磨法制备聚丙烯酸钠改性钙基膨润土(PAAS―CaB)的最佳制备条件。系统测试了改性膨润土的工程特性及微观结构,结果表明,改性剂掺量为8%时,PAAS―CaB膨胀指数可达34.0 mL/(2g),聚丙烯酸钠改性显著提高了钙基膨润土的吸水膨胀性能及化学相容性,为降低了膨润土泥饼的渗透系数。随PAAS掺量的增加,泥浆马氏黏度增大,滤失量和pH值减小,泥浆密度则主要由膨润土掺量控制。与未改性的CaB相比,PAAS―CaB在微观上表现出整体性更好的片层结构、更小的蒙脱石晶层间距。聚丙烯酸钠主要通过桥联包覆作用与接枝共聚合作用改善钙基膨润土性能。研究为优化PAAS―CaB制备工艺提供了可靠依据,为CaB的工程应用提供了可行的技术路径。
    Abstract: The abundant calcium-based bentonite (CaB) resources in China have gained attention as potential alternatives for preparing slurry when constructing cut-off walls. However, the limited swelling capacity and chemical compatibility of natural CaB pose critical challenges to enhancing its engineering properties. In this study, sodium polyacrylate (PAAS) is employed as a modifier to ameliorate CaB, and the optimal preparation conditions for sodium polyacrylate-modified calcium-based bentonite (PAAS―CaB) are determined through the processes of slaking, drying and grinding. The systematic tests on the engineering properties and microstructure of the modified bentonite were conducted. The results reveal that at a modifier content of 8%, the swelling index of PAAS―CaB reaches 34.0 mL/2g. The sodium polyacrylate modification significantly enhances the water absorption and swelling performance of CaB, along with improving its chemical compatibility, resulting in reduced permeability coefficient of the bentonite cake. With the increasing PAAS content, the Marsh viscosity of slurry increases, while the filtration loss and pH value decrease. The slurry density is primarily controlled by the bentonite content. Compared to the unmodified CaB, PAAS―CaB exhibits a superior overall lamellar structure at a microscopic scale, characterized by a smaller interlayer distance of montmorillonite crystalline layers. The sodium polyacrylate primarily modifies the calcium-based bentonite through bridging encapsulation and graft copolymerization. This study establishes a reliable foundation for optimizing the preparation process of PAAS―CaB and presents a feasible technical pathway for the engineering application of the calcium-based bentonite.
  • 图  1   固液比与膨胀指数关系

    Figure  1.   Relationship between solid liquid ratio and SI

    图  2   反应时间与膨胀指数关系

    Figure  2.   Relationship between reaction time and SI

    图  3   反应温度与膨胀指数关系

    Figure  3.   Relationship between reaction temperature and SI

    图  4   膨润土掺量与马氏黏度的关系

    Figure  4.   Relationship between bentonite content and marsh viscosity

    图  5   膨润土掺量与滤失量的关系

    Figure  5.   Relationship between bentonite content and filtration loss

    图  6   膨润土掺量与泥浆密度的关系

    Figure  6.   Relationship between bentonite content and slurry density

    图  7   膨润土掺量与泥浆pH值的关系

    Figure  7.   Relationship between bentonite content and slurry pH

    图  8   各掺量PAAS―CaB的扫描电镜

    Figure  8.   SEM images of (a) CaB, (b) PAAS―CaB with modifier content of 2%, (c) PAAS―CaB with modifier content of 4%, (d) PAAS―CaB with modifier content of 8%

    图  9   天然CaB及各掺量PAAS―CaB的XRD衍射图谱

    Figure  9.   XRD spectra of CaB and PAAS―CaB with modifier contents of 2%~8%

    表  1   膨润土的基本性质指标

    Table  1   Properties of bentonites used in this study

    性质指标 测试方法 CaB NaB
    相对质量密度 ASTM D854 2.34 2.75
    液限/% GB/T 50123 114.3 186.2
    塑限/% GB/T 50123 29.1 52.8
    膨胀指数/
    (mL·(2g)-1)
    ASTM D5890 9.0 23.5
    pH ASTM D4972 8.7 9.3
    黏土分类 ASTM D2487 CH CH
    下载: 导出CSV

    表  2   PAAS―CaB最佳制备条件试验设计

    Table  2   Test design for identifying optimal reaction conditions for PAAS―CaB preparation

    改性样品 反应条件 第一阶段 第二阶段 第三阶段
    2%PAAS―CaB 固液比S︰L 1︰8,1︰9,1︰10,1︰11,1︰12,1︰13
    反应时间t/min 90 30,60,90,120
    反应温度T/℃ 50 50 20,35,50,65,80
    4%PAAS―CaB 固液比S︰L 1︰11,1︰12,1︰13,1︰14,1︰15,1︰16
    反应时间t/min 90 30, 60, 90, 120
    反应温度T/℃ 50 50 20,35,50,65,80
    8%PAAS―CaB 固液比S︰L 1︰14,1︰15,1︰16,1︰17,1︰18,1︰19
    反应时间t/min 90 30,60,90,120
    反应温度T/℃ 50 50 20,35,50,65,80
    下载: 导出CSV

    表  3   NaB、CaB和2%~8%PASS―CaB的理化性质

    Table  3   Physical and chemical properties of NaB, CaB and PAAS―CaB with modifier contents of 2%~8%

    膨润土 膨胀指数SI/ (mL·(2g)-1) 泥饼渗透系数k/(10-10 m·s-1) 化学相容性
    kc/kw
    液限
    wL/%
    塑限
    wp/%
    DIW CaCl2 DIW CaCl2
    NaB 23.5 13.0 0.34 1.07 3.15 186.2 52.8
    CaB 9.0 7.0 1.03 7.55 7.33 114.3 29.1
    2%PAAS―CaB 17.0 11.0 0.43 3.43 7.98 143.7 35.6
    4%PAAS―CaB 25.0 12.5 0.30 0.51 1.71 188.0 54.7
    8%PAAS―CaB 34.0 16.3 0.11 0.13 1.15 221.5 68.5
    下载: 导出CSV

    表  4   FTIR各吸收峰位置及化学键振动模式

    Table  4   Chemical bond vibration patterns and FTIR peaks

    振动模式 吸收峰位置/cm-1
    CaB 2%
    PAAS―
    CaB
    4%
    PAAS―
    CaB
    8% PAAS―
    CaB
    结晶水―OH伸缩振动 3621.6 3618.8 3620.0 3621.1
    自由水―OH伸缩振动 3431.0 3446.6 3447.2 3447.4
    ―CH3不对称振动 2949.7 2949.7
    自由水―OH弯曲振动 1636.5 1636.2 1635.7 1636.1
    羧酸根(COO―)振动,C―H不对称伸缩振动 1569.8
    羧酸根(COO―)振动,C=O对称伸缩振动 1419.3 1416.3
    Si―O―Si反对
    称伸缩振动
    1031.1 1032.0 1032.7 1032.2
    Si―O―Si对称
    伸缩振动
    796.1 795.8 795.9 795.7
    Si―O―Al弯曲
    振动
    519.0 519.2 519.1 518.9
    Si―O―Si对称
    弯曲振动
    465.3 466.8 466.9 466.7
    下载: 导出CSV
  • [1]

    CHEN H X, XUE Q P, MA Z P, et al. Experimental study on barrier performance and durability under dry-wet cycles of fly ash based geopolymer cutoff wall backfill[J]. Construction and Building Materials, 2023, 368: 130415. doi: 10.1016/j.conbuildmat.2023.130415

    [2]

    NGUYEN T B, LEE C, LIM J, et al. Hydraulic characteristics of bentonite cake fabricated on cutoff walls[J]. Clays and Clay Minerals, 2012, 60(1): 40-51. doi: 10.1346/CCMN.2012.0600104

    [3] 沈胜强, 杜延军, 魏明俐, 等. CaCl2作用下PAC改良膨润土滤饼的渗透特性研究[J]. 岩石力学与工程学报, 2017, 36(11): 2810-2817.

    SHEN Shengqiang, DU Yanjun, WEI Mingli, et al. Hydraulic conductivity of filter cakes of polyanionic cellulose-amended bentonite slurries in calcium chloride solutions[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2810-2817. (in Chinese)

    [4] 杨玉玲, 杜延军, 范日东, 等. 膨润土系隔离墙材料渗透特性研究综述[J]. 岩土工程学报, 2015, 37(增刊2): 210-216.

    YANG Yuling, DU Yanjun, FAN Ridong, et al. Advances in permeability for bentonite-based hydraulic containment barriers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 210-216. (in Chinese)

    [5]

    FU X L, ZHANG R, REDDY K R, et al. Membrane behavior and diffusion properties of sand/SHMP-amended bentonite vertical cutoff wall backfill exposed to lead contamination[J]. Engineering Geology, 2021, 284: 106037. doi: 10.1016/j.enggeo.2021.106037

    [6] 查甫生, 杜延军, 刘松玉, 等. 自由膨胀比指标评价改良膨胀土的膨胀性[J]. 岩土工程学报, 2008, 30(10): 1502-1509. doi: 10.3321/j.issn:1000-4548.2008.10.014

    ZHA Fusheng, DU Yanjun, LIU Songyu, et al. Evaluation of swelling capacity of stabilized expansive soils using free swell ratio method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1502-1509. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.014

    [7]

    YANG Y L, DU Y J, REDDY K R, et al. Phosphate-amended sand/Ca-bentonite mixtures as slurry trench wall backfills: assessment of workability, compressibility and hydraulic conductivity[J]. Applied Clay Science, 2017, 142: 120-127. doi: 10.1016/j.clay.2016.10.040

    [8]

    SHI F J, FENG S J, ZHENG Q T, et al. Effect of polyanionic cellulose modification on properties and microstructure of calcium bentonite[J]. Applied Clay Science, 2022, 228: 106633. doi: 10.1016/j.clay.2022.106633

    [9]

    BOHNHOFF G L, SHACKELFORD C D. Hydraulic conductivity of polymerized bentonite-amended backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(3): 04013028. doi: 10.1061/(ASCE)GT.1943-5606.0001034

    [10]

    YANG Y L, REDDY K R, DU Y J, et al. Sodium hexametaphosphate (SHMP)-amended calcium bentonite for slurry trench cutoff walls: workability and microstructure characteristics[J]. Canadian Geotechnical Journal, 2018, 55(4): 528-537. doi: 10.1139/cgj-2017-0291

    [11] 肖崇林, 范日东, 杨爱武. 苯酚溶液作用下CMC改性膨润土化学相容性试验研究[J]. 工程地质学报, 2021, 29(5): 1286-1294.

    XIAO Chonglin, FAN Ridong, YANG Aiwu. Experimental study on chemical compatibility of cmc treated bentonite subjected to phenol solutions[J]. Journal of Engineering Geology, 2021, 29(5): 1286-1294. (in Chinese)

    [12]

    CHUNG J, DANIEL D E. Modified fluid loss test as an improved measure of hydraulic conductivity for bentonite[J]. Geotechnical Testing Journal, 2008, 31(3): 243-251. doi: 10.1520/GTJ100005

    [13]

    DU Y J, SHEN S Q, TIAN K, et al. Effect of polymer amendment on hydraulic conductivity of bentonite in calcium chloride solutions[J]. Journal of Materials in Civil Engineering, 2021, 33(2): 04020452. doi: 10.1061/(ASCE)MT.1943-5533.0003518

    [14]

    SANTAMARINA J C, KLEIN K A, PALOMINO A, et al. Micro-scale aspects of chemical mechanical coupling: Interparticle forces and fabric[C]// Chemical Behaviour: Chemo-Mechanical Coupling from Nano-Structure to Engineering Applications, Rotterdam: Baclzema, 2002.

    [15]

    MORGAN A B, GILMAN J W. Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study[J]. Journal of Applied Polymer Science, 2003, 87(8): 1329-1338. doi: 10.1002/app.11884

    [16]

    THENG B K G. Clay-polymer interactions: summary and perspectives[J]. Clays and Clay Minerals, 1982, 30(1): 1-10.

    [17] 张小红. 高吸水性树脂的结构设计与性能研究[D]. 西安: 西北工业大学, 2006.

    ZHANG Xiaohong. Study on Structure Design and Properties of Super Absorbent Resin[D]. Xi'an: Northwestern Polytechnical University, 2006. (in Chinese)

    [18] 马靖, 陈永贵, 刘聪, 等. 化学作用下压实膨润土膨胀力相应机制研究进展[J]. 岩土工程学报, 2023, 41(10): 2042-2051.

    MA Jing, CHEN Yonggui, LIU Cong, et al. Research progress in mechanisms of swelling pressures of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 41(10): 2042-2051. (in Chinese)

    [19]

    YU Y, PENG R G, YANG C, et al. Eco-friendly and cost-effective superabsorbent sodium polyacrylate composites for environmental remediation[J]. Journal of Materials Science, 2015, 50(17): 5799-5808. doi: 10.1007/s10853-015-9127-5

    [20] 常青. 絮凝学研究的新领域: 且有重金属捕集功能的高分子絮凝剂[J]. 环境科学学报, 2015, 35(1): 1-11.

    CHANG Qing. New research area of flocculation in water treatment-macromolecule flocculant with the function of trapping heavy metal[J]. Acta Scientiae Circumstantiae, 2015, 35(1): 1-11. (in Chinese)

    [21]

    ZENG J X, YE H Q, HUANG N D, et al. Selective separation of Hg(Ⅱ) and Cd(Ⅱ) from aqueous solutions by complexation–ultrafiltration process[J]. Chemosphere, 2009, 76(5): 706-710. doi: 10.1016/j.chemosphere.2009.05.019

图(9)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31
  • 网络出版日期:  2024-06-18
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回