• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

循环加载与卸围压组合扰动下红砂岩损伤破裂与渗透特性

姚玮, 俞缙, 周先齐, 常方强, 常旭

姚玮, 俞缙, 周先齐, 常方强, 常旭. 循环加载与卸围压组合扰动下红砂岩损伤破裂与渗透特性[J]. 岩土工程学报, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053
引用本文: 姚玮, 俞缙, 周先齐, 常方强, 常旭. 循环加载与卸围压组合扰动下红砂岩损伤破裂与渗透特性[J]. 岩土工程学报, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053
YAO Wei, YU Jin, ZHOU Xianqi, CHANG Fangqiang, CHANG Xu. Damage cracking and permeability characteristics of red sandstone under combined disturbance of cyclic loading and confining pressure unloading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053
Citation: YAO Wei, YU Jin, ZHOU Xianqi, CHANG Fangqiang, CHANG Xu. Damage cracking and permeability characteristics of red sandstone under combined disturbance of cyclic loading and confining pressure unloading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053

循环加载与卸围压组合扰动下红砂岩损伤破裂与渗透特性  English Version

基金项目: 

国家自然科学基金项目 52374090

厦门市自然科学基金项目 3502Z202372047

福建省中青年教师教育科研项目 JAT220339

福建省科技计划引导性项目 2022Y0029

厦门理工学院高层次人才科研启动项目 YKJ22045R

详细信息
    作者简介:

    姚玮(1992—),男,博士,讲师,硕士生导师,主要从事岩土力学与地下工程等方面的教学和科研工作。E-mail: dongnanyantu@163.com

    通讯作者:

    俞缙,E-mail: bugyu0717@hqu.edu.cn

  • 中图分类号: TU45

Damage cracking and permeability characteristics of red sandstone under combined disturbance of cyclic loading and confining pressure unloading

  • 摘要: 为探究深地工程开挖诱导岩体损伤破裂及渗透性演化规律,开展了同步测定波速与渗透率的循环加载与卸围压组合扰动三轴试验,研究了不同条件下红砂岩的损伤与渗透性演化规律。结果表明:①岩石在不同组合扰动阶段具有不同的应力应变曲线形态,其末端形态取决于在何种扰动阶段破坏,初始应力比为决定组合扰动诱发岩石破坏难易的主要因素;②总峰值轴向应变随初始应力比增大而增大,其中组合扰动轴向应变占比始终较低,总峰值体积应变绝对值随初始应力比增大而先增大后减小,其中组合扰动体积应变占比较高;③在初始加载阶段,波速增大,渗透率降低,在组合扰动阶段,波速下降,渗透率增加,且损伤与体积应变近似呈线性关系,损伤与渗透率随扰动次数增加均呈先慢后快的增长趋势,且拐点分别近似在一条直线上;④岩石在组合扰动卸围压阶段破坏为单剪切破坏模式,在组合扰动循环加载阶段破坏为共轭剪切破坏模式;⑤双高(高初始应力比与高初始围压)条件将显著加剧岩体开挖失稳破坏风险。
    Abstract: To explore the rules of rock mass damage and permeability evolution induced by excavation of deep earth engineering, the triaxial tests under combined disturbance of cyclic loading and confining pressure unloading for simultaneous measurement of wave velocity and permeability are conducted. The damage and permeability evolution rules of red sandstone under different conditions are studied. The results show that: (1) The rock exhibits different stress-strain curve shapes at different stages of combined disturbance, and their end shapes depend on at which stage of disturbance the rock is failed. The initial stress ratio is the main factor to determine the difficulty of rock failure induced by the combined disturbance. (2) The total peak axial strain increases with the increase of the initial stress ratio, and the proportion of axial strain of the combined disturbance is always low. The absolute value of the total peak volume strain increases first and then decreases with the increase of the initial stress ratio, and the proportion of disturbance volume strain the combined is high. (3) At the initial loading stage, the wave velocity increases, and the permeability decreases. In the combined disturbance stage, the wave velocity decreases and the permeability increases. The damage and volume strain are approximately linearly related, and both the damage and permeability show a slow and then fast growth trend with the increase of disturbance times, and the inflection point seems to be on a straight line. (4) The rock exhibits a single shear failure mode at the combined disturbance unloading confining pressure stage, and a conjugate shear failure mode at the combined disturbance cyclic loading stage. (5) The double-high condition (high initial stress ratio and high initial confining pressure) will significantly increase the risk of excavation instability and failure of rock.
  • 随着一带一路和海洋强国战略的逐步实施,珊瑚岛礁已成为保卫祖国领海完整和维护海洋权益的基地。中国珊瑚砂主要分布于南海海域,是岛礁建设的主要地基材料。珊瑚砂地基的变形和工后沉降关乎岛礁的地基稳定及结构物功能的正常使用,是亟待解决的关键技术难题。

    室内外试验和工程实践都表明砂土和软黏土一样,存在长期变形难以收敛的问题,相对而言,关于软黏土蠕变特性的研究成果较丰富,而对砂土蠕变特性的研究较欠缺,砂土蠕变是土力学领域的重要研究方向之一。已有研究表明,砂土蠕变主要由颗粒重组、接触点变形、颗粒破碎等机制引起[1-2],受粒径、颗粒形状、级配、初始含水率、孔隙水性质、应力历史、应力路径和应力水平等因素影响较大,颗粒粒径越单一、粒径越大、形状越复杂,颗粒破碎越严重,蠕变量越大[3-4],且蠕变变形随应力水平的增大而变大[5]。而与陆源石英砂相比,珊瑚砂的碳酸钙含量极高,以方解石和文石的形式存在,而且特殊的发育环境、物质组成及结构导致其具有独特的物理力学性质,这决定了珊瑚砂有不同于石英砂的蠕变特性。

    珊瑚砂具有低强度、高孔隙比、形状不规则、易破碎、颗粒易胶结、低渗透性等特殊工程性质[6-9],其在长期荷载作用下的蠕变变形较石英砂大[10-11]。珊瑚砂的蠕变主要由颗粒重排、颗粒与颗粒间的摩擦及颗粒破碎所引起,大致分为近似线性变形阶段、衰减阶段和稳定阶段[12],其蠕变变形量与所受偏应力正相关,而与有效围压反相关,可由蠕变应变与时间、偏应力、有效围压相关的四参数蠕变模型[13]描述。但目前对珊瑚砂三轴蠕变特性研究很少,且已有结论并没有得到进一步验证,珊瑚砂蠕变过程中的蠕变规律与其密度、围压、应力水平间的量化关系,以及蠕变机理等问题还并不十分清楚。珊瑚砂的蠕变行为直接影响岛礁建设地基基础的长期沉降变形,而且珊瑚砂地基不同深度所处的应力水平及密实程度各不相同,因此,研究不同相对密实度的珊瑚砂在不同应力水平条件下的长期蠕变变形特性具有重要意义。本文通过借鉴陆源石英砂蠕变变形特性的研究方法,对南海某岛礁珊瑚砂在不同应力水平条件下的蠕变特性开展较为系统地试验研究,进一步丰富珊瑚砂蠕变规律的研究成果,为南海岛礁建设提供重要的理论基础和技术支撑。

    试验所用珊瑚砂取自南海某吹填岛礁。试验前将砂样置于105℃的烘箱内烘干8 h,并置于干燥缸内冷却至室温。根据国家标准GB/T 50123—2019中规定的颗粒最大粒径与试样直径之比小于1/10,将粒径大于5 mm的颗粒筛除,通过颗粒分析试验发现粒径在2~5 mm范围内的颗粒含量较少,故本次试验砂样样品选取颗粒粒径小于5 mm的珊瑚砂。珊瑚砂的不均匀系数Cu为1.8,曲率系数Cc为0.9,级配均匀,其中小于0.25 mm的颗粒含量仅占0.9%,试样的粒径分布曲线详见图1(剔除大于5 mm的颗粒后),试样的基本物理性指标:Gs=2.80,d60=0.624 mm,d30=0.442 mm,d10=0.355 mm,ρdmax=1.45 g/cm3,ρdmin=1.24 g/cm3。本次试验采用的试样尺寸为Ф39.1 mm×80 mm,根据试验要求的干密度及试样尺寸计算并称取所需砂样。试样分3层,采取压样法制备,试样制备完成后采取真空抽气饱和法进行饱和。为保证试验结果的可比性,所有试样采用相同级配。

    图  1  南海某岛礁珊瑚砂的粒径分布曲线
    Figure  1.  Grain-size distribution curve of coral sand from a coral reef island in South China Sea

    珊瑚砂蠕变试验所用仪器为全自动应力路径三轴仪,轴向力传感器的最大加载力为10 kN,其精度为0.1%。蠕变试验采用应力控制,试验过程分3个阶段:①第一阶段为试样固结过程,试样安装完成后施加设定的有效围压进行固结,稳定标准为固结度大于95%;②第二阶段为试样剪切过程,根据三轴CD试验的峰值强度及设定的应力水平,计算设定应力水平下的试样强度对应的轴向力及剪切位移,进而计算试样剪切至设定应力水平所需要的时间和轴向力的加载速率,按照设置好的加载速率剪切至相应的应力水平;③第三阶段,维持轴向力为恒定值,时间不少于7 d,稳定标准为试样轴向应变速率不大于0.05‰/d。蠕变试验全过程处于排水状态。

    为深入系统地研究珊瑚砂的蠕变特性,试样的有效围压取100,200,300,400 kPa,相对密实度分别取0.75,0.95,相应的应力水平分别取0.2,0.4,0.6,0.8,具体试验方案详见表1

    表  1  珊瑚砂的蠕变试验方案
    Table  1.  Schemes of creep tests on coral sand
    序号干密度ρd/(g·cm-3)相对密实度Dr有效围压σ3/kPa应力水平S
    11.390.751000.2,0.4,0.6,0.8
    2200
    3300
    4400
    51.440.951000.2,0.4,0.6,0.8
    6200
    7300
    8400
    下载: 导出CSV 
    | 显示表格

    本文通过对两种不同相对密实度的珊瑚砂开展系统的三轴蠕变试验研究应力水平及周围压力对其蠕变特性的影响。珊瑚砂的蠕变变形的时间零点从剪切至设定应力水平并维持该应力水平为恒定值时开始。为便于对比不同试样的蠕变变形特征,试验结果处理时轴向应变及体积应变仅为蠕变阶段发生的应变,未考虑试样剪切阶段产生的轴向应变和体积应变。

    以有效围压200 kPa为例,先对两种密度的珊瑚砂试样开展200 kPa围压下的三轴固结排水剪切试验,应力应变曲线如图2所示,然后开展4种不同应力水平条件下的蠕变试验。

    图  2  珊瑚砂的三轴CD应力应变关系曲线(σ3=200 kPa)
    Figure  2.  Triaxial consolidation drainage shearing curves of coral sand (confining pressure of 200 kPa)

    图2发现,相对密实度为0.75,0.95的珊瑚砂试样在200 kPa围压作用下,三轴固结排水剪切试验呈现不同程度的剪胀现象。试样密度越高,峰值强度越大,达到峰值所发生的轴向应变越小;试样越密实,剪缩应变越小,体积应变由剪缩向剪胀过渡的相变状态所对应的轴向应变越小。蠕变试验时,待两种不同密度的试样在200 kPa围压条件下固结稳定后,均在排水条件下进行剪切,分别剪切至应力水平为0.2,0.4,0.6,0.8时(每个应力水平条件均在独立的试样上完成,应力水平按CD试验的破坏强度取值确定),保持相应的应力水平不变,此时即为蠕变变形的时间零点,分别观测各试样的轴向变形及体积变化随时间的变化发展规律。试样的轴向蠕变应变-时间关系曲线详见图3,体积蠕变应变-时间关系曲线详见图4

    图  3  珊瑚砂的轴向蠕变应变-时间曲线(σ3=200 kPa)
    Figure  3.  Creep curves of coral sand for axial strain and time (confining pressure of 200 kPa)
    图  4  珊瑚砂的体积蠕变应变-时间曲线(σ3=200 kPa)
    Figure  4.  Creep curves of coral sand for volume strain and time (confining pressure of 200 kPa)

    图3得知,南海珊瑚砂在恒定应力水平条件下轴向蠕变应变随时间发生了明显增长现象,而且随着应力水平的增大,轴向蠕变变形越大,不同应力水平条件下的轴向应变变化趋势基本相同,轴向蠕变变形大致可分为两个阶段:①蠕变变形快速增长阶段,试样在达到相应的应力水平保持恒定时,数分钟内应变增长速率较大,应变速率随着时间增加逐渐减小;②蠕变变形趋稳阶段,应力水平为0.2的不同密度珊瑚砂试样经历3 d时间后,基本趋稳,而应力水平为0.8的试样要经历5 d时间后才能达到平稳状态,蠕变7 d时间后,各试样轴向应变速率均能满足稳定标准要求(轴向应变速率不大于0.05‰/d)。显然,珊瑚砂试样所处的应力水平越高,试样越接近峰值状态,试样强度发挥越充分,轴向蠕变变形越大,达到稳定所需时间越长,主要原因在于,试样所处应力水平越高,颗粒与颗粒之间的接触力越大,导致珊瑚砂颗粒具有较大的势能发生颗粒破碎、移动或滑移的发展趋势,颗粒间位置的调整重组需要较长的时间方能达到新的平衡状态。而且,试样越密实,颗粒间相对位置的调整空间较小,颗粒与颗粒之间位置调整重组的阻力较大,轴向蠕变变形越小。

    图4得知,南海珊瑚砂在某一恒定应力水平条件下体积蠕变应变随时间发生了明显增长现象,而且随着应力水平的增大,体积变形越大,不同应力水平条件下的体积应变变化趋势基本相同,体积蠕变变形与轴向蠕变变形一样可分为变形快速增长和稳定两个阶段。试验过程中珊瑚砂试样实际的最大应力水平为0.86,尚未达到峰值状态,当试样达到0.86的高应力水平时,所对应的剪切阶段体积应变处于剪缩向剪胀过渡的范围内,而处于低应力水平试样所对应的剪切阶段体积应变处于剪缩状态。显然,在200 kPa围压作用下,各应力水平条件下的试样在蠕变阶段均产生了剪缩变形,主要原因在于,当应力水平小于1时,试样强度未达到破坏强度,试样处于剪缩状态或剪缩向剪胀过渡的区间范围内,体积尚未发生剪胀,试样颗粒与颗粒之间发生滑移、滚动,颗粒调整重组,试样轴向变形不断增加,使得试样在蠕变阶段达到新的平衡状态过程中产生剪缩变形。

    以应力水平0.4为例,对两种密度的珊瑚砂试样开展100,200,300,400 kPa围压下的三轴蠕变试验。蠕变试验时,待两种不同密度试样在设定的围压条件下(不同围压条件下的试验在独立的试样上完成)固结稳定后,均在排水条件下进行剪切,分别剪切至应力水平达0.4时,保持该应力水平不变,此时作为蠕变变形的时间零点,分别观测各试样在蠕变阶段的轴向变形及体积变形随时间的变化发展规律,试样的轴向蠕变应变-时间关系曲线详见图5,体积蠕变应变-时间关系曲线详见图6

    图  5  珊瑚砂的轴向蠕变应变-时间曲线(S=0.4)
    Figure  5.  Creep curves of coral sand for axial strain and time (stress level of 0.4)
    图  6  珊瑚砂的体积蠕变应变-时间曲线(S=0.4)
    Figure  6.  Creep curves of coral sand for volume strain and time (stress level of 0.4)

    图5发现,南海珊瑚砂在不同围压条件下轴向蠕变应变随时间增加而增长,而且随着围压增大,轴向蠕变变形越大,不同围压条件下的轴向应变变化趋势基本相同,同样,轴向蠕变变形大体可分为变形快速增长和趋稳两个阶段。围压为100 kPa的试样轴向蠕变变形约3 d后基本趋于稳定,而围压为400 kPa的试样轴向蠕变变形约7 d后才能趋于稳定,应变速率均能满足稳定标准要求(轴向应变速率不大于0.05‰/d),主要原因在于,珊瑚砂试样的围压越高,试样颗粒与颗粒之间的接触力越大,颗粒发生破碎、滑移或移动的动力势能越大,因此细小颗粒填充颗粒间空隙、颗粒重组排列需要更长时间方能达到新的平衡状态。

    图6发现,南海珊瑚砂在某一围压条件下体积蠕变应变随时间增加而增加,而且随着围压的增大,体积变形越大,不同围压条件下的体积蠕变应变变化趋势基本相同,大体可分为变形快速增长和稳定两个阶段。图6中显示,各围压条件下,两种密度试样在蠕变阶段均产生了剪缩变形,主要原因在于,试验过程中各珊瑚砂试样所处的实际应力水平为0.36~0.42,应力水平较低,其所对应的剪切阶段体积应变处于剪缩状态,体积尚未发生剪胀。当试样进入蠕变变形阶段,在一定的围压和轴向力作用下,试样颗粒与颗粒之间发生滑移、滚动,细颗粒填充较粗颗粒形成的孔隙,颗粒调整重组,轴向变形不断增加,使得试样在蠕变阶段达到新的平衡状态过程中产生剪缩变形。

    由于蠕变试验采用应力控制,实际的偏应力根据轴力通过面积修正得到,导致试验过程中的应力水平与预设应力水平并未完全一致,试验结果中的应力水平均为试验时真实的应力水平。将两种相对密实度试样在200 kPa围压条件下蠕变阶段发生的轴向应变与应力水平绘制在同一坐标系统中,如图7所示。

    图  7  珊瑚砂轴向蠕变应变-应力水平关系曲线(σ3=200 kPa)
    Figure  7.  Creep curves of coral sand for axial strain and stress level (confining pressure of 200 kPa)

    图7中发现,珊瑚砂蠕变阶段的轴向应变与应力水平呈现较好的线性相关关系,可表示为

    εaf=f(S)=αS+εaf0, (1)

    式中,εaf为轴向蠕变应变,S为应力水平,εaf0为应力水平S=0时对应的轴向蠕变应变,α为材料参数。

    将两种密度试样在不同围压条件下的轴向蠕变应变与应力水平绘制在同一坐标系统中,如图8所示。

    图  8  珊瑚砂不同围压条件下轴向蠕变应变-应力水平关系曲线
    Figure  8.  Creep curves of coral sand for axial strain and stress level under different confining pressures

    图8可知:

    (1)某一围压条件下,珊瑚砂试样蠕变阶段的轴向应变随应力水平均呈线性关系,受试样密度影响较小。

    (2)不同围压下的轴向蠕变应变随应力水平的变化趋势线近乎平行,因此斜率α受围压影响较小,而应力水平S=0对应的轴向蠕变应变εaf0不同,εaf0受围压影响显著。

    (3)εaf0与围压σ3的关系如图9所示,由于εaf0为无量纲量,将围压σ3除以大气压强pa化为无量纲量,可见,εaf0σ3/pa呈线性关系。

    图  9  εaf0- σ3/pa关系曲线
    Figure  9.  Relationship between εaf0 and σ3/pa

    综上,珊瑚砂蠕变阶段的轴向应变受试样密度影响较小,是应力水平和围压的函数,可表示为

    εaf=f(Sσ3)=αS+εaf0=αS+β(σ3/pa), (2)

    式中,εaf为轴向蠕变应变,S为应力水平,εaf0为应力水平S=0时对应的轴向蠕变应变,σ3为围压,pa为大气压强,α,β为材料常数,针对本文所研究的珊瑚砂,α=0.557,β=0.0272。

    同样方法,将两种密度试样不同围压条件下蠕变阶段的剪应变与应力水平绘制在同一坐标系统中,如图10所示。

    图  10  剪应变与S/(1-S)关系曲线
    Figure  10.  Relationship between shear strain andS/(1-S)

    图10可知,某一围压条件下,珊瑚砂试样蠕变阶段的剪应变随应力水平均呈幂函数变化趋势,即γf=A[S/(1-S)]B,其中,γf为蠕变阶段剪应变,S为应力水平,A,B为材料参数,显然A,B受试样密度影响较小,受围压影响显著,A,B随围压的变化规律详见图11。将围压σ3除以大气压强Pa化为无量纲量,可见Aσ3/Pa呈线性递增关系,Bσ3/Pa呈线性递减关系。

    图  11  A,B-σ3/pa关系曲线
    Figure  11.  Relationship betweenA, B and σ3/pa

    综上,珊瑚砂蠕变阶段的剪应变受试样密度影响较小,是应力水平和围压的函数,可表示为

    γf=h(S,σ3)=A[S/(1S)]B, (3)

    式中,A=a1(σ3/pa)+a2,B=-b1(σ3/pa)+b2。其中,γf为剪应变,S为应力水平,σ3为围压,pa为大气压强,a1,a2,b1,b2为材料常数,针对本文所研究的珊瑚砂,a1=0.029,a2=0.037,b1=0.053,b2=0.555。

    石英砂的蠕变变形主要由颗粒重组、接触点变形、颗粒破碎等机制引起[1-2],受粒径、颗粒形状、级配、初始含水率、孔隙水性质、应力历史、应力路径和应力水平等因素影响较大。通过本文的试验研究表明,珊瑚砂的蠕变变形受围压和应力水平影响较大,而密度对其蠕变变形影响不显著。以相对密实度为0.95的珊瑚砂试样为例,在300 kPa围压作用下,应力水平为0.8时,对试验前后的试样分别进行了颗粒分析,粒径分布曲线如图12所示,显然,本文研究的珊瑚砂蠕变试验前后发生了一定程度的颗粒破碎现象。然而,珊瑚砂一定围压及应力水平条件下,试样颗粒与颗粒之间的接触力进一步促使颗粒发生破碎、滑移或移动,细小颗粒填充颗粒间空隙,颗粒重组排列达到新的平衡状态导致试样产生蠕变变形。因此珊瑚砂的颗粒滑移或滚动、颗粒破碎是其发生蠕变变形的根本原因。

    图  12  珊瑚砂试验前后的粒径分布曲线
    Figure  12.  Grain-size distribution curves of coral sand before and after tests

    (1)珊瑚砂的轴向蠕变变形及体积蠕变变形随着应力水平和围压的增大而增大,蠕变变形大体可分为变形快速增长和趋稳两个阶段。

    (2)珊瑚砂某一围压作用下蠕变阶段的轴向应变与应力水平呈现较好的线性相关关系,剪应变随应力水平呈幂函数变化趋势。

    (3)珊瑚砂蠕变阶段的轴向应变及剪应变受试样密度影响较小,是应力水平和围压的函数。

    (4)珊瑚砂的颗粒滑移或滚动、颗粒破碎是其发生蠕变变形的根本原因。

  • 图  1   岩样和试验设备

    Figure  1.   Rock specimens and testing equipment

    图  2   组合扰动应力控制方案

    Figure  2.   Stress control scheme for combined disturbance

    图  3   单调加载应力应变曲线

    Figure  3.   Stress-strain curves under monotonic loading

    图  4   K0=0.4时组合扰动应力应变曲线

    Figure  4.   Stress-strain curves under combined disturbance at K0=0.4

    图  5   K0=0.6时组合扰动应力应变曲线

    Figure  5.   Stress-strain curves under combined disturbance at K0=0.6

    图  6   K0=0.8时组合扰动应力应变曲线

    Figure  6.   Stress-strain curves under combined disturbance at K0=0.8

    图  7   初始加载与组合扰动轴向应变

    Figure  7.   Relationship between initial loading and axial strain of combined disturbance

    图  8   初始加载与组合扰动体积应变

    Figure  8.   Relationship between initial loading and volume strain of combined disturbance

    图  9   组合扰动下总峰值体积应变

    Figure  9.   Total peak volumetric strains under combined disturbance

    图  10   组合扰动下体积应变与相对围压比关系

    Figure  10.   Relationship between volumetric strain and relative confining pressure ratio under combined disturbance

    图  11   不同初始条件下应变围压增量比

    Figure  11.   Increment ratios of strain confining pressure under different initial conditions

    图  12   组合扰动下波速和渗透率与体积应变关系

    Figure  12.   Relationship among wave velocity, permeability and volumetric strain under combined disturbance

    图  13   组合扰动下损伤与体积应变关系

    Figure  13.   Relationship between damage and volumetric strain under combined disturbance

    图  14   组合扰动下损伤与扰动次数关系

    Figure  14.   Relationship between damage and disturbance number under combined disturbance

    图  15   组合扰动下渗透率与扰动次数关系

    Figure  15.   Relationship between permeability and disturbance number under combined disturbance

    图  16   单调加载下岩样破坏模式

    Figure  16.   Failure modes of rock specimens under monotonic loading

    图  17   组合扰动下岩样破坏模式

    Figure  17.   Failure modes of rock specimens under combined disturbance

  • [1] 谢和平, 张茹, 张泽天, 等. 深地科学与深地工程技术探索与思考[J]. 煤炭学报, 2023, 48(11): 3959-3978.

    XIE Heping, ZHANG Ru, ZHANG Zetian, et al. Reflections and explorations on deep earth science and deep earth engineering technology[J]. Journal of China Coal Society, 2023, 48(11): 3959-3978. (in Chinese)

    [2] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813.

    HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. (in Chinese)

    [3] 陈兴周, 白亚妮, 陈莉丽, 等. 高渗压与循环加卸载环境下开挖卸荷岩体力学特性试验研究[J]. 岩土工程学报, 2024, 46(4): 737-745. doi: 10.11779/CJGE20221470

    CHEN Xingzhou, BAI Yani, CHEN Lili, et al. Experimental study on mechanical properties of excavated unloading rock mass under high osmotic pressure and cyclic loading and unloading environments[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 737-745. (in Chinese) doi: 10.11779/CJGE20221470

    [4] 陈旭, 肖义, 汤明高, 等. 多级等幅循环荷载作用下砂岩变形、渗透及声发射特征试验研究[J]. 岩石力学与工程学报, 2024, 43(8): 1923-1935.

    CHEN Xu, XIAO Yi, TANG Minggao, et al. Experimental study on deformation, permeability and AE characteristics of sandstone under multi-stage cyclic loading with a constant amplitude[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(8): 1923-1935. (in Chinese)

    [5]

    WANG J B, ZHANG Q, SONG Z P, et al. Microstructural variations and damage evolvement of salt rock under cyclic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 152: 105078. doi: 10.1016/j.ijrmms.2022.105078

    [6]

    NING Z X, XUE Y G, LI Z Q, et al. Damage characteristics of granite under hydraulic and cyclic loading-unloading coupling condition[J]. Rock Mechanics and Rock Engineering, 2022, 55(3): 1393-1410. doi: 10.1007/s00603-021-02698-3

    [7]

    WANG W, DUAN X L, JIA Y, et al. Deformation characteristics, gas permeability and energy evolution of low-permeability sandstone under cyclic loading and unloading path[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(9): 369. doi: 10.1007/s10064-022-02858-x

    [8] 张培森, 许大强, 颜伟, 等. 应力-渗流耦合作用下不同卸荷路径对砂岩损伤特性及能量演化规律的影响研究[J]. 岩土力学, 2024, 45(2): 325-339.

    ZHANG Peisen, XU Daqiang, YAN Wei, et al. Influence of unloading paths on sandstone damage characteristics and energy evolution law under stress-seepage coupling[J]. Rock and Soil Mechanics, 2024, 45(2): 325-339. (in Chinese)

    [9] 李克钢, 杨宝威, 秦庆词. 基于核磁共振技术的白云岩卸荷损伤与渗透特性试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3493-3502.

    LI Kegang, YANG Baowei, QIN Qingci. Experimental study on unloading damage and permeability of dolomite based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3493-3502. (in Chinese)

    [10]

    YANG Y R, LI W P, WANG Q Q, et al. Experimental study on mechanical behavior and permeability evolution of weakly cemented sandstone under unloading conditions[J]. Bulletin of Engineering Geology and the Environment, 2024, 83(4): 115. doi: 10.1007/s10064-024-03621-0

    [11]

    CHEN Z Q, MA C C, LI T B, et al. Experimental investigation of the failure mechanism of deep granite under high seepage water pressure and strong unloading effect[J]. Acta Geotechnica, 2022, 17(11): 5009-5030. doi: 10.1007/s11440-022-01665-8

    [12]

    XIAO F, JIANG D Y, WU F, et al. Effects of prior cyclic loading damage on failure characteristics of sandstone under true-triaxial unloading conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104379. doi: 10.1016/j.ijrmms.2020.104379

    [13] 侯志强, 王宇, 刘冬桥, 等. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(5): 1510-1520.

    HOU Zhiqiang, WANG Yu, LIU Dongqiao, et al. Experimental study of mechanical properties of marble under triaxial unloading confining pressure after fatigue loading[J]. Rock and Soil Mechanics, 2020, 41(5): 1510-1520. (in Chinese)

    [14]

    FAIRHURST C E, HUDSON J A. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 281-289. http://geomecanica.org/didacticMat/resistenciaMec/isrmNormTranslation.pdf

    [15] 刘新荣, 刘俊, 李栋梁, 等. 不同初始卸荷水平对深埋砂岩力学特性影响规律试验研究[J]. 岩土力学, 2017, 38(11): 3081-3088.

    LIU Xinrong, LIU Jun, LI Dongliang, et al. Experimental research on the effect of different initial unloading levels on mechanical properties of deep-buried sandstone[J]. Rock and Soil Mechanics, 2017, 38(11): 3081-3088. (in Chinese)

    [16] 邱士利, 冯夏庭, 张传庆, 等. 不同初始损伤和卸荷路径下深埋大理岩卸荷力学特性试验研究[J]. 岩石力学与工程学报, 2012, 31(8): 1686-1697.

    QIU Shili, FENG Xiating, ZHANG Chuanqing, et al. Experimental research on mechanical properties of deep marble under different initial damage levels and unloading paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1686-1697. (in Chinese)

    [17]

    KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 1-30. doi: 10.1002/nag.1610120102

  • 期刊类型引用(4)

    1. 邹玲. 马蹄形水工隧洞施工工法对围岩变形影响对比分析. 水利科技与经济. 2025(01): 143-147 . 百度学术
    2. 何卓洺. 水工隧洞自密实混凝土关键制备技术研究. 陕西水利. 2025(03): 156-158 . 百度学术
    3. 陈强,王强,王宁,曹学平. 不同开挖方式下隧道稳定性分析. 黑龙江科学. 2024(14): 98-100+104 . 百度学术
    4. 王斌,李龙. 广东某矿石输送隧道工程地质条件分析研究. 江西建材. 2024(11): 225-228 . 百度学术

    其他类型引用(0)

图(17)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  53
  • PDF下载量:  134
  • 被引次数: 4
出版历程
  • 收稿日期:  2024-01-15
  • 网络出版日期:  2024-07-15
  • 刊出日期:  2024-12-31

目录

/

返回文章
返回