• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

循环加载与卸围压组合扰动下红砂岩损伤破裂与渗透特性

姚玮, 俞缙, 周先齐, 常方强, 常旭

姚玮, 俞缙, 周先齐, 常方强, 常旭. 循环加载与卸围压组合扰动下红砂岩损伤破裂与渗透特性[J]. 岩土工程学报, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053
引用本文: 姚玮, 俞缙, 周先齐, 常方强, 常旭. 循环加载与卸围压组合扰动下红砂岩损伤破裂与渗透特性[J]. 岩土工程学报, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053
YAO Wei, YU Jin, ZHOU Xianqi, CHANG Fangqiang, CHANG Xu. Damage cracking and permeability characteristics of red sandstone under combined disturbance of cyclic loading and confining pressure unloading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053
Citation: YAO Wei, YU Jin, ZHOU Xianqi, CHANG Fangqiang, CHANG Xu. Damage cracking and permeability characteristics of red sandstone under combined disturbance of cyclic loading and confining pressure unloading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053

循环加载与卸围压组合扰动下红砂岩损伤破裂与渗透特性  English Version

基金项目: 

国家自然科学基金项目 52374090

厦门市自然科学基金项目 3502Z202372047

福建省中青年教师教育科研项目 JAT220339

福建省科技计划引导性项目 2022Y0029

厦门理工学院高层次人才科研启动项目 YKJ22045R

详细信息
    作者简介:

    姚玮(1992—),男,博士,讲师,硕士生导师,主要从事岩土力学与地下工程等方面的教学和科研工作。E-mail: dongnanyantu@163.com

    通讯作者:

    俞缙,E-mail: bugyu0717@hqu.edu.cn

  • 中图分类号: TU45

Damage cracking and permeability characteristics of red sandstone under combined disturbance of cyclic loading and confining pressure unloading

  • 摘要: 为探究深地工程开挖诱导岩体损伤破裂及渗透性演化规律,开展了同步测定波速与渗透率的循环加载与卸围压组合扰动三轴试验,研究了不同条件下红砂岩的损伤与渗透性演化规律。结果表明:①岩石在不同组合扰动阶段具有不同的应力应变曲线形态,其末端形态取决于在何种扰动阶段破坏,初始应力比为决定组合扰动诱发岩石破坏难易的主要因素;②总峰值轴向应变随初始应力比增大而增大,其中组合扰动轴向应变占比始终较低,总峰值体积应变绝对值随初始应力比增大而先增大后减小,其中组合扰动体积应变占比较高;③在初始加载阶段,波速增大,渗透率降低,在组合扰动阶段,波速下降,渗透率增加,且损伤与体积应变近似呈线性关系,损伤与渗透率随扰动次数增加均呈先慢后快的增长趋势,且拐点分别近似在一条直线上;④岩石在组合扰动卸围压阶段破坏为单剪切破坏模式,在组合扰动循环加载阶段破坏为共轭剪切破坏模式;⑤双高(高初始应力比与高初始围压)条件将显著加剧岩体开挖失稳破坏风险。
    Abstract: To explore the rules of rock mass damage and permeability evolution induced by excavation of deep earth engineering, the triaxial tests under combined disturbance of cyclic loading and confining pressure unloading for simultaneous measurement of wave velocity and permeability are conducted. The damage and permeability evolution rules of red sandstone under different conditions are studied. The results show that: (1) The rock exhibits different stress-strain curve shapes at different stages of combined disturbance, and their end shapes depend on at which stage of disturbance the rock is failed. The initial stress ratio is the main factor to determine the difficulty of rock failure induced by the combined disturbance. (2) The total peak axial strain increases with the increase of the initial stress ratio, and the proportion of axial strain of the combined disturbance is always low. The absolute value of the total peak volume strain increases first and then decreases with the increase of the initial stress ratio, and the proportion of disturbance volume strain the combined is high. (3) At the initial loading stage, the wave velocity increases, and the permeability decreases. In the combined disturbance stage, the wave velocity decreases and the permeability increases. The damage and volume strain are approximately linearly related, and both the damage and permeability show a slow and then fast growth trend with the increase of disturbance times, and the inflection point seems to be on a straight line. (4) The rock exhibits a single shear failure mode at the combined disturbance unloading confining pressure stage, and a conjugate shear failure mode at the combined disturbance cyclic loading stage. (5) The double-high condition (high initial stress ratio and high initial confining pressure) will significantly increase the risk of excavation instability and failure of rock.
  • 图  1   岩样和试验设备

    Figure  1.   Rock specimens and testing equipment

    图  2   组合扰动应力控制方案

    Figure  2.   Stress control scheme for combined disturbance

    图  3   单调加载应力应变曲线

    Figure  3.   Stress-strain curves under monotonic loading

    图  4   K0=0.4时组合扰动应力应变曲线

    Figure  4.   Stress-strain curves under combined disturbance at K0=0.4

    图  5   K0=0.6时组合扰动应力应变曲线

    Figure  5.   Stress-strain curves under combined disturbance at K0=0.6

    图  6   K0=0.8时组合扰动应力应变曲线

    Figure  6.   Stress-strain curves under combined disturbance at K0=0.8

    图  7   初始加载与组合扰动轴向应变

    Figure  7.   Relationship between initial loading and axial strain of combined disturbance

    图  8   初始加载与组合扰动体积应变

    Figure  8.   Relationship between initial loading and volume strain of combined disturbance

    图  9   组合扰动下总峰值体积应变

    Figure  9.   Total peak volumetric strains under combined disturbance

    图  10   组合扰动下体积应变与相对围压比关系

    Figure  10.   Relationship between volumetric strain and relative confining pressure ratio under combined disturbance

    图  11   不同初始条件下应变围压增量比

    Figure  11.   Increment ratios of strain confining pressure under different initial conditions

    图  12   组合扰动下波速和渗透率与体积应变关系

    Figure  12.   Relationship among wave velocity, permeability and volumetric strain under combined disturbance

    图  13   组合扰动下损伤与体积应变关系

    Figure  13.   Relationship between damage and volumetric strain under combined disturbance

    图  14   组合扰动下损伤与扰动次数关系

    Figure  14.   Relationship between damage and disturbance number under combined disturbance

    图  15   组合扰动下渗透率与扰动次数关系

    Figure  15.   Relationship between permeability and disturbance number under combined disturbance

    图  16   单调加载下岩样破坏模式

    Figure  16.   Failure modes of rock specimens under monotonic loading

    图  17   组合扰动下岩样破坏模式

    Figure  17.   Failure modes of rock specimens under combined disturbance

  • [1] 谢和平, 张茹, 张泽天, 等. 深地科学与深地工程技术探索与思考[J]. 煤炭学报, 2023, 48(11): 3959-3978.

    XIE Heping, ZHANG Ru, ZHANG Zetian, et al. Reflections and explorations on deep earth science and deep earth engineering technology[J]. Journal of China Coal Society, 2023, 48(11): 3959-3978. (in Chinese)

    [2] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813.

    HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. (in Chinese)

    [3] 陈兴周, 白亚妮, 陈莉丽, 等. 高渗压与循环加卸载环境下开挖卸荷岩体力学特性试验研究[J]. 岩土工程学报, 2024, 46(4): 737-745. doi: 10.11779/CJGE20221470

    CHEN Xingzhou, BAI Yani, CHEN Lili, et al. Experimental study on mechanical properties of excavated unloading rock mass under high osmotic pressure and cyclic loading and unloading environments[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 737-745. (in Chinese) doi: 10.11779/CJGE20221470

    [4] 陈旭, 肖义, 汤明高, 等. 多级等幅循环荷载作用下砂岩变形、渗透及声发射特征试验研究[J]. 岩石力学与工程学报, 2024, 43(8): 1923-1935.

    CHEN Xu, XIAO Yi, TANG Minggao, et al. Experimental study on deformation, permeability and AE characteristics of sandstone under multi-stage cyclic loading with a constant amplitude[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(8): 1923-1935. (in Chinese)

    [5]

    WANG J B, ZHANG Q, SONG Z P, et al. Microstructural variations and damage evolvement of salt rock under cyclic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 152: 105078. doi: 10.1016/j.ijrmms.2022.105078

    [6]

    NING Z X, XUE Y G, LI Z Q, et al. Damage characteristics of granite under hydraulic and cyclic loading-unloading coupling condition[J]. Rock Mechanics and Rock Engineering, 2022, 55(3): 1393-1410. doi: 10.1007/s00603-021-02698-3

    [7]

    WANG W, DUAN X L, JIA Y, et al. Deformation characteristics, gas permeability and energy evolution of low-permeability sandstone under cyclic loading and unloading path[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(9): 369. doi: 10.1007/s10064-022-02858-x

    [8] 张培森, 许大强, 颜伟, 等. 应力-渗流耦合作用下不同卸荷路径对砂岩损伤特性及能量演化规律的影响研究[J]. 岩土力学, 2024, 45(2): 325-339.

    ZHANG Peisen, XU Daqiang, YAN Wei, et al. Influence of unloading paths on sandstone damage characteristics and energy evolution law under stress-seepage coupling[J]. Rock and Soil Mechanics, 2024, 45(2): 325-339. (in Chinese)

    [9] 李克钢, 杨宝威, 秦庆词. 基于核磁共振技术的白云岩卸荷损伤与渗透特性试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3493-3502.

    LI Kegang, YANG Baowei, QIN Qingci. Experimental study on unloading damage and permeability of dolomite based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3493-3502. (in Chinese)

    [10]

    YANG Y R, LI W P, WANG Q Q, et al. Experimental study on mechanical behavior and permeability evolution of weakly cemented sandstone under unloading conditions[J]. Bulletin of Engineering Geology and the Environment, 2024, 83(4): 115. doi: 10.1007/s10064-024-03621-0

    [11]

    CHEN Z Q, MA C C, LI T B, et al. Experimental investigation of the failure mechanism of deep granite under high seepage water pressure and strong unloading effect[J]. Acta Geotechnica, 2022, 17(11): 5009-5030. doi: 10.1007/s11440-022-01665-8

    [12]

    XIAO F, JIANG D Y, WU F, et al. Effects of prior cyclic loading damage on failure characteristics of sandstone under true-triaxial unloading conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104379. doi: 10.1016/j.ijrmms.2020.104379

    [13] 侯志强, 王宇, 刘冬桥, 等. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(5): 1510-1520.

    HOU Zhiqiang, WANG Yu, LIU Dongqiao, et al. Experimental study of mechanical properties of marble under triaxial unloading confining pressure after fatigue loading[J]. Rock and Soil Mechanics, 2020, 41(5): 1510-1520. (in Chinese)

    [14]

    FAIRHURST C E, HUDSON J A. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 281-289. http://geomecanica.org/didacticMat/resistenciaMec/isrmNormTranslation.pdf

    [15] 刘新荣, 刘俊, 李栋梁, 等. 不同初始卸荷水平对深埋砂岩力学特性影响规律试验研究[J]. 岩土力学, 2017, 38(11): 3081-3088.

    LIU Xinrong, LIU Jun, LI Dongliang, et al. Experimental research on the effect of different initial unloading levels on mechanical properties of deep-buried sandstone[J]. Rock and Soil Mechanics, 2017, 38(11): 3081-3088. (in Chinese)

    [16] 邱士利, 冯夏庭, 张传庆, 等. 不同初始损伤和卸荷路径下深埋大理岩卸荷力学特性试验研究[J]. 岩石力学与工程学报, 2012, 31(8): 1686-1697.

    QIU Shili, FENG Xiating, ZHANG Chuanqing, et al. Experimental research on mechanical properties of deep marble under different initial damage levels and unloading paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1686-1697. (in Chinese)

    [17]

    KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 1-30. doi: 10.1002/nag.1610120102

  • 期刊类型引用(5)

    1. 吴锋,卓杨,刘旭. 整体卸荷式板桩码头原型观测技术. 水运工程. 2023(01): 29-33 . 百度学术
    2. 田秀强. 深水地下连续墙板桩码头施工技术研究. 工程与建设. 2023(03): 1009-1011 . 百度学术
    3. 蔡正银. 板桩结构土压力理论的创新发展. 岩土工程学报. 2020(02): 201-220 . 本站查看
    4. 李沛. T型地下连续墙测试中弯矩的计算方法推导. 港工技术. 2020(06): 40-44 . 百度学术
    5. 徐光明,任国峰,顾行文,陈爱忠,李乐晨. 新型板桩码头群桩基础被动段桩侧压力试验研究. 岩土工程学报. 2018(03): 502-511 . 本站查看

    其他类型引用(0)

图(17)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 5
出版历程
  • 收稿日期:  2024-01-15
  • 网络出版日期:  2024-07-15
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回