Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

离心超重力下物质运动试验及降雨模拟分析

凌道盛, 施昌宇, 郑建靖, 闫子壮, 赵天浩, 赵宇

凌道盛, 施昌宇, 郑建靖, 闫子壮, 赵天浩, 赵宇. 离心超重力下物质运动试验及降雨模拟分析[J]. 岩土工程学报, 2025, 47(6): 1132-1141. DOI: 10.11779/CJGE20240046
引用本文: 凌道盛, 施昌宇, 郑建靖, 闫子壮, 赵天浩, 赵宇. 离心超重力下物质运动试验及降雨模拟分析[J]. 岩土工程学报, 2025, 47(6): 1132-1141. DOI: 10.11779/CJGE20240046
LING Daosheng, SHI Changyu, ZHENG Jianjing, YAN Zizhuang, ZHAO Tianhao, ZHAO Yu. Tests on object motion in centrifugal hypergravity field and analysis of rainfall simulation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1132-1141. DOI: 10.11779/CJGE20240046
Citation: LING Daosheng, SHI Changyu, ZHENG Jianjing, YAN Zizhuang, ZHAO Tianhao, ZHAO Yu. Tests on object motion in centrifugal hypergravity field and analysis of rainfall simulation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1132-1141. DOI: 10.11779/CJGE20240046

离心超重力下物质运动试验及降雨模拟分析  English Version

基金项目: 

国家自然科学基金基础科学中心项目 51988101

详细信息
    作者简介:

    凌道盛(1968—),男,教授,主要从事土动力学、计算土力学方面的研究工作。E-mail: dsling@zju.edu.cn

    通讯作者:

    郑建靖, E-mail: zhengjianjing@zju.edu.cn

  • 中图分类号: TU411

Tests on object motion in centrifugal hypergravity field and analysis of rainfall simulation

  • 摘要: 离心机是岩土工程学科开展缩尺模型试验的主要装置,被广泛应用于降雨、滑坡等工程问题。开展了一系列无约束小球运动离心试验,基于双目立体视觉原理还原小球轨迹并验证了离心超重力下质点运动的控制方程。在此基础上对离心降雨模拟进行数值分析并提出4项降雨均匀性指标。分析表明,质量变化与非惯性系耦合作用会使得物体受到一项额外的作用力。离心超重力下the Green Mist喷嘴模拟的降雨的空间和统计分布特征会在空气阻力和非惯性系作用下发生显著改变。降雨均匀性指标对于确定喷嘴阵列布置具有指导意义,以研究工况为例,2×2的the Green Mist喷嘴阵列沿边坡长度和宽度方向的喷嘴覆盖面积重叠率的推荐值分别为60.47%,55.36%。
    Abstract: Centrifuges are the main devices to conduct scaled model tests in the geotechnical engineering discipline, which are widely used in engineering problems such as rainfall and landslides. In this study, a series of centrifugal tests on the motion of unconstrained spheres are carried out. The trajectories of the spheres are reconstructed based on the binocular stereo vision to verify the equations for particle motion in centrifugal hypergravity proposed by Ling et al. On this basis, the numerical analysis is conducted on centrifugal rainfall simulation, and four rainfall uniformity indexes are proposed. It is shown that the coupling of mass changes and non-inertial frame will result in an additional force acting on the object. The spatial and statistical distribution characteristics of rainfall from the Green Mist nozzle can be significantly changed by air resistance and the non-inertial frame forces. The rainfall uniformity indexes have guiding significance for determining the layout of nozzle arrays. Taking the research conditions in this study as an example, for the 2×2 Green Mist nozzle array, the recommended values of the overlap of nozzle coverage area along the length and width directions of the side slope are 60.47% and 55.36%, respectively.
  • 各向异性是黏土的基本性质之一,分为原生各向异性和次生各向异性。针对原生各向异性对黏土力学性状的影响,许多学者对与沉积平面呈不同夹角试样进行压缩、无侧限压缩和三轴压缩等试验,发现原生各向异性对黏土变形以及强度特性的影响不容忽视。

    小应变剪切模量特性作为土的重要力学性质之一,也同样受到原生各向异性的影响。Simpson等[1]的研究表明,小应变剪切模量的原生各向异性对隧道及基坑周围土体变形的预测结果影响很大;Jovičić等[2]和吴宏伟等[3]分别针对伦敦黏土和上海软黏土进行研究,利用弯曲元测得两种土在低围压下水平和竖直方向上的最大剪切模量比值分别为1.5和1.21,说明对于不同种类黏土,原生各向异性对其小应变剪切模量的影响不尽相同。

    结构性黏土在我国东南沿海地区分布广泛,许多工程建设涉及到此类黏土,迄今已对其小应变剪切模量进行了诸多研究,但以往的研究主要考虑孔隙比、应力水平和结构损伤等对小应变剪切模量的影响[4],而考虑原生各向异性对小应变剪切模量影响的研究较少,有必要进行系统探究。

    本文对不同削样方向的湛江黏土原状试样开展不同围压下的共振柱试验,研究原生各向异性对最大动剪切模量的影响以及考虑原生各向异性的最大动剪切模量随围压演化规律的表征方法。

    土样取自湛江市某基坑内地下10~11 m,尺寸为30 cm×30 cm×30 cm原状块状样。表1为其基本物理力学指标与颗粒组成。由表1可见,湛江黏土具有较差物理性质,与软黏土相似,但力学性质较优,呈现上述特性的原因为其具有的强结构性[4]

    表  1  湛江黏土平均物理力学性质指标与颗粒组成
    Table  1.  Physical and mechanical indexes and particle composition of Zhanjiang clay
    重度γ/(kN·m-3)含水率w/%孔隙比e渗透系数K/(cm·s-1)液限wL/%塑限wP/%塑性指数IP结构屈服应力σk/kPa无侧限抗压强度/kPa灵敏度St颗粒组成/%
    >0.05/mm0.005~0.05/mm0.002~0.005/mm<0.002/mm
    17.152.981.442.73×10−859.628.131.5400143.57.28.239.520.731.6
    下载: 导出CSV 
    | 显示表格

    图1(a)为不同方向圆柱试样示意图,定义试样轴线与土体沉积平面夹角为α,即竖直方向试样为90°,水平方向试样为0°。针对α为0°,22.5°,45°,67.5°,90°方向原状样进行研究,试样规格尺寸为直径50 mm,高度100 mm的圆柱体。

    图  1  试样示意图与试验设备
    Figure  1.  Schematic diagram of specimens and test apparatus

    试验所用设备为GDS共振柱仪,如图1(b)所示。试样的边界条件为一端固定,一端自由。通过电磁驱动系统对试样逐级施加扭矩,测得试样的共振频率和对应的剪应变,试样动剪切模量由下式得到:

    G=ρ(2πfH/β)2, (1)

    式中,G为试样动剪切模量,ρ为试样密度,f为共振频率,H为试样高度,β为扭转振动频率方程特征值。

    试样在抽气饱和后安装至共振柱仪上,随后进行反压饱和,当B值达0.98后,进行固结,围压分别设定为50,100,200,300,400,500,600,700,800 kPa。试样固结完成后,进行共振柱试验。

    图2所示,不同方向试样动剪切模量G和剪应变γ的关系曲线形态与规律类似。剪切模量在小剪应变下衰减速度较小;随剪应变发展,衰减速度增大。低围压下G-γ曲线随围压增大而上移,围压超过600~700 kPa,G-γ曲线随围压增长而下移,与通常软黏土G-γ曲线大多随围压增大而单调上移规律存在明显差异,说明结构性对湛江黏土G-γ曲线规律影响较大。

    图  2  不同方向试样剪切模量G与剪应变γ关系
    Figure  2.  Relationship between shear modulus G and shear strainγ for specimens in different directions

    湛江黏土动应力-应变关系可用Hardin-Drnevich双曲线模型表征,如下式:

    τ=γa+bγ, (2)

    式中,a,b为拟合参数。式(2)可以写为

    1/G=a+bγ (3)

    式(3)中,当γ趋近于0时,得到最大动剪切模量Gmax=1/a,利用式(3)求得不同方向试样在各围压下的Gmax。为了消除孔隙比对Gmax的影响,引入孔隙比函数F(e)=1/(0.3+0.7e2)将Gmax进行归一化处理,图3为经孔隙比函数归一化的Gmax/F(e)-围压σ3曲线。随围压增大,不同方向试样Gmax/F(e)-σ3曲线均呈现先上升后下降的规律,在围压为400~500 kPa即在σk左右时,曲线出现转折。

    图  3  不同方向试样Gmax/F(e)与围压σ3的关系
    Figure  3.  Relationship between Gmax /F(e) and confining pressure σ3 for specimens in different directions

    为了更好描述原生各向异性对最大动剪切模量的影响,定义Gmax/F(e)的原生各向异性系数:

    Kα=Dα/D90°, (4)

    式中,Dα定义为α方向试样的Gmax/F(e),D90°定义为90°(竖直)方向试样的Gmax/F(e)。

    Gmax/F(e)的原生各向异性系数Kα与围压的关系如图4所示。相同围压下,Kα随方向角α变化,Kα整体上随α增大而减小,即试样的方向越靠近水平其刚度越大,说明原生各向异性对湛江黏土最大动剪切模量Gmax的影响十分显著。湛江黏土基本单元为扁平状片堆、粒状碎屑矿物与单片颗粒,上述基本单元在沉积时,其长轴更倾向于水平方向,导致颗粒间水平方向的接触更紧密,结构更强[3],进而更靠近水平方向试样的刚度更大。

    图  4  不同方向试样Kα与围压σ3的关系
    Figure  4.  Relationship between Kα and confining pressure σ3 for specimens in different directions

    当围压低于400~600 kPa时,同一方向试样Kα随围压增长基本保持恒定,K,K22.5°,K45°,K67.5°,K90°分别为1.314,1.279,1.148,1.045,1;当围压高于400~600 kPa时,同一方向试样Kα随围压增长呈明显减小趋势,不同方向试样的Gmax/F(e)差异减小。说明围压低于σk时,围压的增大几乎不影响原生各向异性对Gmax的影响,但当围压超过σk后,围压的增大减弱了原生各向异性对Gmax的影响。文献[2]中伦敦黏土在围压超过屈服应力后,其水平与竖直方向试样的最大剪切模量的差异随围压增长也呈减小趋势,与本文试验结果一致。

    图3中出现Gmax/F(e)随围压增大呈先上升后下降的特殊现象,文献[4]认为Gmax同时受到平均有效应力、孔隙比和结构损伤的影响,采用该文的表征方法对试验结果进行分析,具体的表达形式如下所示:

    Gmax/F(e)=A(1+(σmpa)n)1+B(1+(σmpa)n)(kr+1kr1+(ησmpc)λ) (5)

    式中 A,B,n,kr,ηλ为反映各种应力历史和土体性质的参数;σm为围压;pa为标准大气压;pc为表观前期固结压力即结构屈服应力σk,不同方向试样压缩试验得到的σk差异较小,均取400 kPa。

    采用式(5)将不同方向试样Gmax/F(e)与围压的关系进行定量表征。从图4可得,高应力下各向异性对试样的Gmax/F(e)影响减弱,可假定不同方向试样Gmax/F(e)极限值相同。最终将试验数据与拟合曲线一同绘制于图5,发现拟合效果很好,拟合参数见表2

    图  5  不同方向试样的Gmax/F(e)与固结围压lgσ3关系曲线
    Figure  5.  Curves of Gmax/F(e) and confining pressure lgσ3 of specimens in different directions
    表  2  不同方向试样拟合参数
    Table  2.  Fitting parameters of specimens in different directions
    αA/MPaBnkrηλR2
    0°39.924890.166780.543090.350920.564336.429980.99251
    22.5°37.899510.159990.582640.354620.564266.371470.99075
    45°33.763280.151680.546420.377400.554026.384730.99432
    67.5°31.154760.157610.562540.424990.608896.077370.99727
    90°29.754220.157430.560670.444480.577506.056690.99835
    下载: 导出CSV 
    | 显示表格

    分析表2中拟合参数与试样方向的关系,可得参数A,kr,λ和试样轴线与土体沉积平面夹角α呈线性关系(图6),参数B,n,ηα增大分别保持在0.1587,0.5591,0.5738上下,且波动范围较小(参数B,n,η的标准差S分别为0.005455,0.01570和0.02131)。

    图  6  拟合参数A,krλ与试样方向的关系
    Figure  6.  Relationship between fitting parameters A, kr and λ with directions of specimens

    图6中参数A,kr,λ的拟合方程和参数B,n,η的平均值同时代入式(5),得到考虑原生各向异性的最大动剪切模量的表征方法:

    Gmax/F(e)=(c1α+c2)(1+(σmpa)n)1+B(1+(σmpa)n)·((d1α+d2)+1(d1α+d2)1+(ησmpc)(e1α+e2)) (6)

    式中σm为围压;α表示试样的方向,为试样轴线与土体沉积平面夹角;pa为标准大气压,取101.325 kPa;pcσk,取400 kPa;B=0.1587,n=0.5591,η=0.5738;c1=−0.1204,c2=39.9166;d1=1.144×10−3,d2=0.3390;e1=−4.625×10−3,e2=6.4722。

    (1)在同一围压下,不同α试样经孔隙比函数归一化的最大动剪切模量Gmax/F(e)与90°方向试样Gmax/F(e)的比值Kαα增大而减小。当围压低于和高于σk时,同一α试样Kα随围压增长分别呈基本保持恒定与明显减小趋势,说明当围压低于σk时,围压几乎不影响原生各向异性对Gmax影响,围压超过σk后,不同方向的Gmax/F(e)差异减小,围压的增大减弱了原生各向异性对Gmax的影响。

    (2)受固结压硬和结构损伤的影响,湛江黏土的Gmax/F(e)变化规律与通常软黏土试验结果不同,不同方向试样的Gmax/F(e)随围压增大均呈先增大后减小规律,当围压在σk左右时出现转折。

    (3)基于采用考虑结构损伤的公式可很好拟合湛江黏土不同方向试样Gmax与围压关系曲线,提出了考虑原生各向异性影响的Gmax演化规律表征方法。

  • 图  1   ZJU400土工离心机及试验模型布置

    Figure  1.   ZJU400 centrifuge and arrangement of model

    图  2   小球轨迹获取流程示意图

    Figure  2.   Scheme of acquisition of ball trajectory

    图  3   图像识别的小球位置

    Figure  3.   Scheme of vision processing for ball tracking

    图  4   空间坐标计算示意图

    Figure  4.   Diagram of calculating spatial coordinate

    图  5   离心机坐标系

    Figure  5.   Coordinate systems for a centrifuge

    图  6   10g第1组试验小球下落轨迹与理论轨迹的对比

    Figure  6.   Comparison between theoretical and experimental trajectories in the first set of tests with 10g

    图  7   试验和理论落点的相对偏移量

    Figure  7.   Relative offsets between theoretical and experimental impact points

    图  8   单喷嘴雨滴轨迹

    Figure  8.   Trajectories of raindrops from a single nozzle

    图  9   不同下落高度的雨滴落点分布

    Figure  9.   Impact points of raindrops at different fall heights

    图  10   雨滴速度、角度以及直径的统计分布

    Figure  10.   Statistical distribution of velocities, angles and diameters of raindrops

    图  11   不同喷射速度下的雨滴平均冲击速度

    Figure  11.   Average impact velocities of raindrops with different injection velocities

    图  12   2×2喷嘴阵列模拟降雨模型示意图

    Figure  12.   Schematic of simulation model for rainfall

    图  13   不同喷嘴阵列间距下的均匀性指标

    Figure  13.   Uniformity indexes of different spacings of nozzle array

    图  14   离心加速度对最佳重叠率的影响

    Figure  14.   Influences of centrifugal acceleration on optimal overlap ratio

    表  1   降雨数值模拟参数

    Table  1   Parameters for numerical simulation of rainfall

    参数
    雨滴数量 20200
    最大喷射角/(°) 59
    喷射速度/(m·s-1) 18
    速度标准差/(m·s-1) 0.18
    雨滴直径范围/m (40~350)×10-6
    雨滴平均直径/m 121×10-6
    蒸发参数k1/(μms2) 115×10-12
    离心机有效半径R/m 4.5
    模型箱高度h/m 1
    离心加速度/g 50
    下载: 导出CSV
  • [1]

    CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution[J]. Science China Technological Sciences, 2022, 65(12): 2791-2808. doi: 10.1007/s11431-022-2125-x

    [2]

    NG C W W. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST[J]. Journal of Zhejiang University-Science A: Applied Physics & Engineering, 2014, 15(1): 1-21.

    [3]

    BYRNE P M, PARK S S, BEATY M, et al. Numerical modeling of liquefaction and comparison with centrifuge tests[J]. Canadian Geotechnical Journal, 2004, 41(2): 193-211. doi: 10.1139/t03-088

    [4]

    MANZARI M T, GHORAIBY M E, KUTTER B L, et al. Liquefaction experiment and analysis projects (LEAP): Summary of observations from the planning phase[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 714-743. doi: 10.1016/j.soildyn.2017.05.015

    [5] 马立秋, 张建民, 张武. 爆炸离心模型试验研究进展与展望[J]. 岩土力学, 2011, 32(9): 2827-2833. doi: 10.3969/j.issn.1000-7598.2011.09.044

    MA Liqiu, ZHANG Jianmin, ZHANG Wu. Development and prospect for centrifugal blasting modeling[J]. Rock and Soil Mechanics, 2011, 32(9): 2827-2833. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.09.044

    [6] 周健, 杜强, 李业勋, 等. 无黏性土滑坡型泥石流形成机理的离心机模型试验研究[J]. 岩土工程学报, 2014, 36(11): 2010-2017. doi: 10.11779/CJGE201411006

    ZHOU Jian, DU Qiang, LI Yexun, et al. Centrifugal model tests on formation mechanism of landslide-type debris flows of cohesiveless soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2010-2017. (in Chinese) doi: 10.11779/CJGE201411006

    [7]

    XU J W, UEDA K, UZUOKA R. Evaluation of failure of slopes with shaking-induced cracks in response to rainfall[J]. Landslides, 2022, 19(1): 119-136. doi: 10.1007/s10346-021-01734-1

    [8]

    TAYLOR R N. Centrifuges in Modeling: Principles and Scale Effects[M]// Geotechnical Centrifuge Technology. London: CRC Press, 2018: 19-33.

    [9]

    SCHOFIELD A N. Cambridge geotechnical centrifuge operations[J]. Géotechnique, 1980, 30(3): 227-268. doi: 10.1680/geot.1980.30.3.227

    [10]

    TOBITA T, ASHINO T, REN J, et al. Kyoto University LEAP-GWU-2015 tests and the importance of curving the ground surface in centrifuge modelling[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 650-662. doi: 10.1016/j.soildyn.2017.10.012

    [11] 王永志, 王海, 袁晓铭, 等. 土工离心试验应力相似差异特征与设计准则[J]. 岩土工程学报, 2018, 40(11): 2148-2154. doi: 10.11779/CJGE201811023

    WANG Yongzhi, WANG Hai, YUAN Xiaoming, et al. Difference characteristics of stress similitude for geotechnical centrifuge modelling and design criteria[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2148-2154. (in Chinese) doi: 10.11779/CJGE201811023

    [12]

    LEI G, SHI J. Physical meanings of kinematics in centrifuge modelling technique[J]. Rock and Soil Mechanics, 2003, 24(2): 188-193. doi: 10.3969/j.issn.1000-7598.2003.02.008

    [13] 凌道盛, 施昌宇, 郑建靖, 等. 离心模型试验物质运动非惯性系效应[J]. 岩土工程学报, 2021, 43(2): 226-235. doi: 10.11779/CJGE202102002

    LING Daosheng, SHI Changyu, ZHENG Jianjing, et al. Non-inertial effects on matter motion in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 226-235. (in Chinese) doi: 10.11779/CJGE202102002

    [14]

    ITOH K, TOYOSAWA Y, KUSAKABE O. Centrifugal modelling of rockfall events[J]. International Journal of Physical Modelling in Geotechnics, 2009, 9(2): 1-22. doi: 10.1680/ijpmg.2009.090201

    [15]

    CAICEDO B. Mathematical and physical modelling of rainfall in centrifuge[J]. International Journal of Physical Modelling in Geotechnics, 2015, 15(3): 150-164. doi: 10.1680/jphmg.14.00023

    [16] 陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894. https://cge.nhri.cn/article/id/14444

    CHEN Yunmin, HAN Chao, LING Daosheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894. (in Chinese) https://cge.nhri.cn/article/id/14444

    [17]

    ZHAO S, KANG F, LI J. Displacement monitoring for slope stability evaluation based on binocular vision systems[J]. Optik, 2018, 171: 658-671. doi: 10.1016/j.ijleo.2018.06.097

    [18]

    LI H, WU H, LOU L, et al. Ping-pong robotics with high-speed vision system[C]// Control Automation Robotics & Vision (ICARCV), Guangzhou, 2012, IEEE: 106-111.

    [19]

    CAICEDO B, TRISTANCHO J. A virtual rain simulator for droplet transport in a centrifuge[C]// Proceedings of the 7th International Conference on Physical Modelling in Geotechnics (ICPMG), Zurich, 2010.

    [20]

    CHENG C H, CHOW C L, CHOW W K. Trajectories of large respiratory droplets in indoor environment: A simplified approach[J]. Building and Environment, 2020, 183: 107196. doi: 10.1016/j.buildenv.2020.107196

    [21]

    SIDAHMED M M, TAHER M D, BROWN R B. A virtual nozzle for simulation of spray generation and droplet transport[J]. Biosystems Engineering, 2005, 92(3): 295-307. doi: 10.1016/j.biosystemseng.2005.07.012

    [22] 刘小川. 降雨诱发非饱和土边坡浅层失稳离心模型试验及分析方法[D]. 杭州: 浙江大学, 2017.

    LIU Xiaochuan. Centrifugal Model Test and Analysis Method of Shallow Instability of Unsaturated Soil Slope Induced by Rainfall[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)

    [23]

    ZHANG G, QIAN J, WANG R, et al. Centrifuge model test study of rainfall-induced deformation of cohesive soil slopes[J]. Soils and Foundations, 2011, 51(2): 297-305. doi: 10.3208/sandf.51.297

    [24]

    WANG S, IDINGER G. A device for rainfall simulation in geotechnical centrifuges[J]. Acta Geotech, 2021, 16: 2887-2898. doi: 10.1007/s11440-021-01186-w

    [25]

    BHATTACHERJEE D, VISWANADHAM B V. Design and performance of an in-flight rainfall simulator in a geotechnical centrifuge[J]. Geotechnical Testing Journal, 2018, 41(1): 72-91. doi: 10.1520/GTJ20160254

    [26]

    SERIO M A, CAROLLO F G, FERRO V. Raindrop size distribution and terminal velocity for rainfall erosivity studies: A review[J]. Journal of Hydrology, 2019, 576: 210-228. doi: 10.1016/j.jhydrol.2019.06.040

    [27]

    CHEN Y, IRFAN M, UCHIMURA T, et al. Development of elastic wave velocity threshold for rainfall-induced landslide prediction and early warning[J]. Landslides, 2019, 16(5): 955-968. doi: 10.1007/s10346-019-01138-2

    [28]

    HUNG W Y, TRAN M C, YEH F H, et al. Centrifuge modeling of failure behaviors of sandy slope caused by gravity, rainfall, and base shaking[J]. Engineering Geology, 2020, 271: 105609. doi: 10.1016/j.enggeo.2020.105609

    [29]

    MOORE I D, HIRSCHI M C, BARFIELD B J. Kentucky rainfall simulator[J]. Transactions of the Asae, 1983, 26(4): 1085-1089. doi: 10.13031/2013.34081

    [30]

    BLANQUIES J, SCHARFF M, HALLOCK B. The design and construction of a rainfall simulator[C]// Int Eros Control Assoc, (IECA), 2003 34th Annu Conf Expo, Las Vegas, 2003.

    [31]

    HORNE M A. Design and Construction of A Rainfall Simulator for Large-Scale Testing of Erosion Control Practices and Products[D]. Alabama: Auburn University, 2017.

    [32]

    CHRISTIANSEN J E. Irrigation by Sprinkling[M]. Berkeley: University of California, 1942.

    [33]

    GRISSO R, ASKEW S, MCCALL D. Nozzles: selection and sizing[J]. Virginia Cooperative Extension, 2019, 442(32): 1-10.

  • 期刊类型引用(2)

    1. 高志傲,孔令伟,王双娇,黄珏皓,赵浩武. 循环荷载下不同裂隙方向饱和原状膨胀土动力特性试验研究. 岩土工程学报. 2025(04): 736-748 . 本站查看
    2. 简涛,孔令伟,柏巍,王俊涛,刘炳恒. 含水率对原状黄土小应变剪切模量影响的试验研究. 岩土工程学报. 2022(S1): 160-165 . 本站查看

    其他类型引用(1)

图(14)  /  表(1)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  27
  • PDF下载量:  47
  • 被引次数: 3
出版历程
  • 收稿日期:  2024-01-14
  • 网络出版日期:  2024-05-10
  • 刊出日期:  2025-05-31

目录

/

返回文章
返回