Detecting method for defects of anchor cables based on strain monitoring technology
-
摘要: 针对预应力锚索在长期运行条件下产生腐蚀、断口等缺陷的问题,基于应变体监测技术,通过对中部、左侧、右侧缺陷锚索的张拉试验和数值模拟试验,提出了一种确定锚索缺陷位置的理论方法。试验结果表明缺陷位置与应变之间存在关系,且数值模拟试验与物理试验结果、趋势基本相同;通过15组不同缺陷位置数值模拟试验拟合建立了锚索应变与缺陷位置的关系,为确定锚索缺陷位置提供了一种可行途径,也为预应力锚固工程的长期安全运行提供了技术支撑。Abstract: Aiming at the problems of defects suchas corrosion and fracture of prestressed anchor cables under long-term operation, a theoretical method to determine the defect location of anchor cables is proposed based on the strain monitoring technology and the numerical simulation tests on the middle, left and right defective anchor cables. The experimental results show that there is a relationship between the defect location and the strain, and the results and trends of the numerical simulation and physical tests are basically the same. The relationship between the cable strain and the defect location is established through 15 groups of numerical simulation tests on different defect locations. It provides a feasible way to determine the defect location of cables and also a technical support for long-term safe operation of prestressed anchorage engineering.
-
-
表 1 左侧缺陷应变值
Table 1 Strain values in case of left defect
缺陷位置(右侧) 1号传感器/ με 2号传感器/ με 应变差/ με 右1 1.026×103 1.03×103 -4.07954 右2 1.026×103 1.03×103 -4.07966 右3 1.026×103 1.03×103 -4.08269 右4 1.026×103 1.03×103 -4.08071 右5 1.026×103 1.03×103 -3.97698 表 2 中部缺陷应变值
Table 2 Strain values in case of middle defect
缺陷位置(中部) 1号传感器/ με 2号传感器/ με 应变差/ με 中1 1.041×103 1.043×103 -1.3766 中2 1.042×103 1.043×103 -4.55766×10-1 中3 1.042×103 1.042×103 2.01399×10-2 中4 1.043×103 1.042×103 4.53554×10-1 中5 1.043×103 1.041×103 1.49256 表 3 右侧缺陷应变值
Table 3 Strain values in case of right defect
缺陷位置(左侧) 1号传感器/ με 2号传感器/ με 应变差/ με 左1 1.043×103 1.039×103 3.78827 左2 1.043×103 1.039×103 3.82529 左3 1.043×103 1.039×103 3.82494 左4 1.043×103 1.039×103 3.82517 左5 1.043×103 1.039×103 3.82506 -
[1] 苗国航. 我国预应力岩土锚固技术的现状与发展[J]. 地质与勘探, 2003, 39(3): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200303025.htm MIAO Guohang. The present situation and development of prestressed geotechnical anchoring technique in China[J]. Geology and Exploration, 2003, 39(3): 91-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200303025.htm
[2] 陈祖煜, 杨健. 岩土预应力锚固技术的进展[J]. 贵州水力发电, 2004, 18(5): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GSLF200405002.htm CHEN Zuyu, YANG Jian. Development of prestress anchor technology in rock-soil engineering[J]. Guizhou Water Power, 2004, 18(5): 5-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSLF200405002.htm
[3] 桑涛, 利亮, 贾宏宇. 预应力锚固技术在三峡永久船闸高边坡工程中的应用[J]. 山东交通学院学报, 2010, 18(3): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJT201003016.htm SANG Tao, LI Liang, JIA Hongyu. Application of prestressed anchorage in the high rock slope reinforcement of the permanent shiplock in the Three Gorges Project[J]. Journal of Shandong Jiaotong University, 2010, 18(3): 66-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JNJT201003016.htm
[4] 高大水, 吴海斌, 王莉. 三峡船闸高边坡预应力锚索耐久性研究[J]. 岩土力学, 2005, 26(增刊2): 126-130, 135. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2032.htm GAO Dashui, WU Haibin, WANG Li. Research on endurance of prestressed anchorage cables in TGP shiplock's high slope[J]. Rock and Soil Mechanics, 2005, 26(S2): 126-130, 135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2032.htm
[5] 郑静, 曾辉辉, 朱本珍. 腐蚀对锚索力学性能影响的试验研究[J]. 岩石力学与工程学报, 2010, 29(12): 2469-2474. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012015.htm ZHENG Jing, ZENG Huihui, ZHU Benzhen. Test study of influence of erosion on mechanical behavior of anchor[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2469-2474. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012015.htm
[6] 安新赞. 基于光纤Bragg光栅传感技术的锚索预应力监测可行性研究[D]. 西安: 西安理工大学, 2017. AN Xinzan. Feasibility Study on Prestressed Monitoring of Anchor Cable Based on Fiber Bragg Grating Sensing Technology[D]. Xi'an: Xi'an University of Technology, 2017. (in Chinese)
[7] LEUNG C K Y, WAN K T, INAUDI D. et al. Review: optical fiber sensors for civil engineering applications[J]. Mater Struct, 2015, 48: 871-906.
[8] 汪小刚, 王玉杰, 贾志欣, 等. 分布式光纤预应力智能监测锚索: CN106906824B[P]. 2020-10-09. WANG Xiaogang, WANG Yujie, JIA Zhixin, et al. Distributed optical fiber prestressed intelligent monitoring anchor cable: CN106906824B[P]. 2020-10-09. (in Chinese)
[9] 邓年春, 欧进萍, 周智, 等. 光纤光栅在预应力钢绞线应力监测中的应用[J]. 哈尔滨工业大学学报, 2007, 39(10): 1550-1553. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200710010.htm DENG Nianchun, OU Jinping, ZHOU Zhi, et al. Application of fiber Bragg grating sensor to monitor tensile stress in a seven-wire prestressed steel strand[J]. Journal of Harbin Institute of Technology, 2007, 39(10): 1550-1553. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200710010.htm
[10] 孙彦鹏, 凌永玉, 林兴超, 等. 新型预应力锚索内部监测结构试验研究[J]. 岩土工程学报, 2020, 42(增刊2): 226-230. doi: 10.11779/CJGE2020S2040 SUN Yanpeng, LING Yongyu, LIN Xingchao, et al. Experimental study on internal monitoring structure of a new prestressed anchor cable[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 226-230. (in Chinese) doi: 10.11779/CJGE2020S2040