Development and properties of a magnetic high-titanium lunar regolith simulant IRSM-1
-
摘要: 对月球的探测已进入以月球原位资源利用(ISRU)为主的新阶段,系统掌握月壤特殊的力学响应与工程特性对月球资源开发利用具有重要意义。迄今为止,绝大多数针对月壤及模拟月壤性质的试验研究都是在地球上开展的,忽略了月面环境,尤其是低重力环境对这些性质的影响。地质力学磁力模型试验可以结合磁性相似材料模拟月面g/6的低重力环境。由于目前已有的模拟月壤磁性极弱,无法满足磁力模型试验的要求。因此,研制了一种具有一定磁性的高钛模拟月壤IRSM-1并测试了该模拟月壤的成分及性质。将测试结果与部分月壤及模拟月壤的性质进行了对比分析。结果表明:IRSM-1模拟月壤的化学矿物成分与高钛月壤相似,其物理力学特性在月壤的范围之内,较好地还原了真实月壤的基本特性。此外,IRSM-1还具有一定的磁性,可以作为磁力模型试验的相似材料。
-
关键词:
- 月球原位资源利用 /
- 月壤 /
- 地质力学磁力模型试验 /
- IRSM-1模拟月壤
Abstract: The moon exploration has progressed into the stage of in-situ resource utilization (ISRU). Systematically understanding the unique mechanical response and engineering characteristics of the lunar regolith is crucial for the development and exploitation of lunar resources. Most experimental studies on the properties of lunar regolith and its simulants have been conducted on Earth, disregarding the impact of lunar environment, particularly the low gravity, on these properties. The geomechanical magnetic model test, which uses magnetic similar materials, can simulate the low-gravity environment of the lunar surface. However, the existing lunar regolith simulants have weak magnetism and cannot meet the requirements of the magnetic model tests. Thus, a high-titanium lunar simulant IRSM-1 with magnetic properties is introduced, and its composition and properties are tested. The test results are then compared with those of some lunar regolith and existing simulants. The findings reveal that the chemical and mineral compositions of the IRSM-1 simulant is similar to those of the high-titanium lunar regolith, and their physical and mechanical properties are within the range of lunar regolith, which accurately replicates the fundamental characteristics of the real lunar regolith. Moreover, the IRSM-1 simulant has certain magnetism and can be employed as a similar material for magnetic model tests. -
-
表 1 原材料及月壤矿物成分
Table 1 Mineralogical compositions of materials and lunar regolith
名称 矿物成分 火山灰 斜长石、辉石、橄榄石等 钛磁铁矿 钛铁矿、磁铁矿、辉石等 IRSM-1 斜长石、辉石、钛铁矿、磁铁矿等 Apollo 17样品[2] 斜长石、辉石、钛铁矿、玻璃等 表 2 原材料及月壤化学成分
Table 2 Chemical compositions of raw materials and lunar regolith
化学
成分火山灰 钛磁铁矿 月壤样品71, 061[3] Apollo 17a[2] IRSM-1 SiO2 49.41 11.99 40.09 41.2 40.24 TiO2 3.24 24.73 9.32 8.40 8.95 Al2O3 18.00 4.82 10.70 12.0 14.89 FeO 13.39 41.42 17.85 16.7 23.19 MnO 0.18 0.33 0.24 0.23 0.27 MgO 3.38 8.89 9.92 9.90 3.53 CaO 6.70 3.23 10.59 10.9 6.26 Na2O 2.14 0.21 0.36 0.35 — K2O 2.50 0.01 0.08 0.16 1.87 P2O5 0.62 0.03 0.07 0.14 0.30 S 0.14 4.05 0.13 0.12 1.31 总计 99.69 99.69 99.35 100.1 99.69 表 3 IRSM-1与部分月壤的相对质量密度、密度和孔隙比
Table 3 Comparison of specific gravity, density and void ratio
名称 相对质量密度 密度/(g·m-3) 孔隙比 ρmin ρmax emin emax IRSM-1 3.26 1.26 1.99 0.64 1.59 Apollo 11 3.10 1.36 1.80 0.67 1.39 Apollo 14 2.93 0.87 1.60 0.87 2.37 Apollo 15 3.24 1.10 1.93 0.71 1.94 Apollo 17 1.57 2.29 表 4 IRSM-1及其它模拟月壤的力学特性
Table 4 Mechanical properties of IRSM-1 and other simulants
名称 黏聚力/kPa 内摩擦角/(°) 压缩指数Cc IRSM-1 0.90 44.34 0.036~0.13 月壤 0.3~2.1 35~47 0.05~0.3 TJ-1 0.86 47.6 0.086 KLS-1 1.85 44.91 0.29 -
[1] HEIKEN G, VANIMAN D T, FRENCH B M. Lunar sourcebook: a user's guide to the moon[M]. Cambridge: Cambridge University Press, 1991.
[2] 欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005. OUYANG Z Y. Introduction to lunar science[M]. Beijing: China Aerospace Publishing House, 2005. (in Chinese)
[3] TOKLU Y C, AKPINAR P. Lunar soils, simulants and lunar construction materials: an overview[J]. Advances in Space Research, 2022, 70(3): 762-779. doi: 10.1016/j.asr.2022.05.017
[4] RYU B H, WANG C C, CHANG I. Development and geotechnical engineering properties of KLS-1 lunar simulant[J]. Journal of Aerospace Engineering, 2018, 31(1): 04017083. doi: 10.1061/(ASCE)AS.1943-5525.0000798
[5] JIANG M J, LI L Q, SUN Y G. Properties of TJ-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2012, 25(3): 463-469. doi: 10.1061/(ASCE)AS.1943-5525.0000129
[6] 罗先启, 毕金锋. 地质力学磁力模型试验原理及其在工程中的应用[J]. 岩土力学, 2018, 39(1): 367-374. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801045.htm LUO Xianqi, BI Jinfeng. Principle and engineering application of geomechanics magnetic model test[J]. Rock and Soil Mechanics, 2018, 39(1): 367-374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801045.htm
[7] LI R L, ZHOU G Q, YAN K, et al. Preparation and characterization of a specialized lunar regolith simulant for use in lunar low gravity simulation[J]. International Journal of Mining Science and Technology, 2022, 32(1): 1-15. doi: 10.1016/j.ijmst.2021.09.003
-
期刊类型引用(13)
1. 张沛杰,王展亮. 石灰和水泥改良软土力学性能及水稳定性研究. 湖南工程学院学报(自然科学版). 2025(01): 79-87 . 百度学术
2. 罗跃春,甘展孜,曾新雄,王宁伟. 珠江口西岸滨海区软土属性分析. 土工基础. 2024(02): 239-242 . 百度学术
3. 宋许根. 广州南沙某深厚软土区综合管廊基坑变形破坏分析. 岩石力学与工程学报. 2023(S1): 3629-3642 . 百度学术
4. 蔡子勇,乔世范,檀俊坤,刘屹颀. 南沙港区深厚淤泥软土特性及空间异性研究. 地下空间与工程学报. 2023(03): 897-910 . 百度学术
5. 李天降,朱孟君,王哲,宋许根,甄洁,衣凡,雷华阳,郑刚,程雪松. 软土区管廊基坑柔性支护下基坑变形控制标准. 科学技术与工程. 2023(21): 9199-9206 . 百度学术
6. 田琦,陈国垚,王伟,史宗刚,刘红位. 福建沿海原状软土力学特性试验研究. 水利与建筑工程学报. 2023(05): 78-84 . 百度学术
7. 裘友强,张留俊,富志鹏,刘军勇,张微,王超. 内陆河湖相软土土性指标统计特征与竖向变化规律研究. 水利水电技术(中英文). 2023(12): 23-34 . 百度学术
8. 刘彬,徐苏静,张四俊,惠海鹏,居俊. 沿海地区深厚软土工程力学特性分析. 江苏建筑. 2022(03): 101-104 . 百度学术
9. 罗维高,林惠庭,章志,卢荣富,施雨,周晓敏. 大直径超长距离钢顶管施工技术应用分析. 广东土木与建筑. 2022(08): 71-75 . 百度学术
10. 李治斌,党星海,蔡明祥,赵健赟,郁林,李先怡. 基于PSInSAR技术的珠海市地表沉降监测与归因分析. 自然灾害学报. 2021(01): 38-46 . 百度学术
11. 戴巍,陈智超,冯青山,麦凌威,祝敏刚. 木质纤维与水泥共同改良软土的力学性能与微观机制分析. 水力发电. 2021(03): 121-125 . 百度学术
12. 陆惠平,朱挻,刘泽,何矾,李洪. 绍兴淤泥质软土工程特性. 建筑技术开发. 2021(15): 155-157 . 百度学术
13. 刘维正,葛孟源,李天雄. 南沙海相软土工程特性原位测试对比与统计规律分析. 岩土工程学报. 2021(S2): 267-275 . 本站查看
其他类型引用(9)