Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高细粒含量砂砾石料的渗透特性试验研究

吴平, 凌小东, 石北啸, 何宁

吴平, 凌小东, 石北啸, 何宁. 高细粒含量砂砾石料的渗透特性试验研究[J]. 岩土工程学报, 2023, 45(S1): 44-49. DOI: 10.11779/CJGE2023S10028
引用本文: 吴平, 凌小东, 石北啸, 何宁. 高细粒含量砂砾石料的渗透特性试验研究[J]. 岩土工程学报, 2023, 45(S1): 44-49. DOI: 10.11779/CJGE2023S10028
WU Ping, LING Xiaodong, SHI Beixiao, HE Ning. Experimental study on permeability characteristics of sandy gravel with high fines content[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 44-49. DOI: 10.11779/CJGE2023S10028
Citation: WU Ping, LING Xiaodong, SHI Beixiao, HE Ning. Experimental study on permeability characteristics of sandy gravel with high fines content[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 44-49. DOI: 10.11779/CJGE2023S10028

高细粒含量砂砾石料的渗透特性试验研究  English Version

基金项目: 

江西省水利厅科技项目 202124ZDKT06

国家重点研究计划项目课题 2022YFC3005502

国家自然科学基金面上项目 52279135

详细信息
    作者简介:

    吴平(1980—),男,本科,正高级工程师,主要从事水文地质与工程地质、水利水电工程地质勘察与水利工程地质等方面的研究工作。E-mail: 285676627@qq.com

  • 中图分类号: TU411

Experimental study on permeability characteristics of sandy gravel with high fines content

  • 摘要: 开展了不良级配高细料含量覆盖层砂砾石料的渗透特性试验研究。结果表明:随相对密度和小于5 mm粒径颗粒含量的增加,渗透系数降低。渗透系数随相对密度的变化可用半对数公式描述,渗透系数随P<5含量的变化可用幂函数描述。通过归一化方法提出了渗透系数经验公式,可预测试验或文中建议范围内鄱阳湖覆盖层砂砾料的渗透系数。高细粒含量砂砾石料的渗透变形破坏方式主要为过渡型或流土型,随相对密度和P<5含量的提高,渗透变形破坏方式逐渐由过渡型趋向于流土型。
    Abstract: A series of tests are conducted on the permeability characteristics of sandy gravel with high fines content. It is found that the permeability coefficient of sandy gravel decreases with the increase of the particles less than 5 mm and the relative density. The change of permeability coefficient with the relative density can be described by the semi-logarithmic formula, and the change of permeability coefficient with the content of particles less than 5 mm can be described by the power function. By using the normalization method, the empirical formula is proposed to predict the permeability coefficient of sandy gravel for overburden in Poyang Lake area. The seepage deformation of sandy gravel with high content of particles less than 5 mm is characterized by the soil flow failure or transitional failure. With the increase of the content of particles less than 5 mm and the relative density, the transitional failure turns to the soil flow one.
  • 图  1   级配包络线与试验级配

    Figure  1.   Grading envelopes and testing gradations

    图  2   kDr的变化

    Figure  2.   Change of k with Dr

    图  3   kDr/k0.55Dr/0.55的变化

    Figure  3.   Change of kDr/k0.55 with Dr/0.55

    图  4   kDr/k0.55-ln(Dr/0.55)关系曲线

    Figure  4.   Relationship between of kDr/k0.55 and ln(Dr/0.55)

    图  5   kP<5的变化

    Figure  5.   Change of k with P<5

    图  6   kP<5/k59.4%-P<5/59.4%关系曲线

    Figure  6.   Relationship between kP<5/k59.4% and P<5/59.4%

    图  7   iF-Dr的变化

    Figure  7.   Change of iF with Dr

    图  8   iF-P<5的变化

    Figure  8.   Change of iF with P<5

    图  9   流速与坡降关系曲线

    Figure  9.   Relationship between seepage velocity and head gradient

    表  1   相对密度试验结果及试验干密度

    Table  1   Test results of relative density and test densities

    级配特性 相对质量密度 最小干密度/
    (g·cm-3)
    最大干密度/
    (g·cm-3)
    相对密度
    Dr
    试验干密度/
    (g·cm-3)
    孔隙比
    上包线
    P<5=59.4%
    2.64 1.81 2.10 0.55 1.96 0.348
    0.68 2.00 0.322
    0.80 2.03 0.297
    平均线
    P<5=50.8%
    2.64 1.85 2.16 0.33 1.94 0.361
    0.55 2.01 0.314
    0.68 2.05 0.288
    0.80 2.09 0.263
    下包线
    P<5=42.2%
    2.64 1.91 2.22 0.55 2.07 0.276
    0.68 2.11 0.251
    0.80 2.15 0.228
    下载: 导出CSV

    表  2   渗透系数测试结果

    Table  2   Results of permeability coefficient

    级配特性 相对密度 ρd/
    (g·cm-3)
    k/
    (cm·s-1)
    kDrk0.55 kP<5k59.4%
    上包线
    P<5=59.4%
    0.55 1.96 9.81×10-3 1.000 1
    0.68 2.00 6.11×10-3 0.623 1
    0.80 2.03 3.77×10-3 0.384 1
    平均线
    P<5=50.8%
    0.33 1.94 2.11×10-2 1.808
    0.55 2.01 1.17×10-2 1.000 1.188
    0.68 2.05 7.48×10-3 0.642 1.224
    0.80 2.09 4.46×10-3 0.382 1.183
    下包线
    P<5=42.2%
    0.55 2.07 1.41×10-2 1.000 1.436
    0.68 2.11 8.77×10-3 0.622 1.435
    0.80 2.15 5.05×10-3 0.359 1.341
    下载: 导出CSV

    表  3   某高坝砂砾石料渗透系数

    Table  3   Permeability coefficients of sandy gravel of a high dam

    级配特性 P<5/
    %
    Dr ρd/
    (g·cm-3)
    k/
    (cm·s-1)
    上包线 37 0.90 2.28 2.50×10-4
    平均线 25 0.90 2.27 6.01×10-3
    下包线 17 0.90 2.22 7.73×10-2
    下载: 导出CSV

    表  4   渗透系数试验与计算对比

    Table  4   Strength indexes of sandy gravel

    小于5 mm粒径含量
    P<5 /%
    相对密度
    Dr
    渗透系数计算值/
    (cm·s-1)
    渗透系数试验值/
    (cm·s-1)
    相对误差/%
    59.4 0.55 9.81×10-3 9.81×10-3 0.0
    59.4 0.68 6.37×10-3 6.11×10-3 4.2
    59.4 0.80 3.73×10-3 3.77×10-3 -1.0
    50.8 0.33 2.11×10-2 2.11×10-2 0.2
    50.8 0.55 1.15×10-2 1.17×10-2 -1.8
    50.8 0.68 7.43×10-3 7.48×10-3 -0.7
    50.8 0.80 4.36×10-3 4.46×10-3 -2.3
    42.2 0.55 1.38×10-2 1.41×10-2 -2.4
    42.2 0.68 8.93×10-3 8.77×10-3 1.8
    42.2 0.80 5.23×10-3 5.05×10-3 3.5
    下载: 导出CSV

    表  5   渗透变形参数

    Table  5   Strength indexes of sandy gravel

    级配特性 相对密度 ρd/
    (g·cm-3)
    临界坡降 破坏坡降 破坏方式
    上包线
    P<5=59.4%
    0.55 1.96 0.45 1.09 过渡
    0.68 2.00 1.15 1.31 流土
    0.80 2.03 1.37 1.53 流土
    平均线
    P<5=50.8%
    0.33 1.94 0.21 0.93 过渡
    0.55 2.01 0.54 1.25 过渡
    0.68 2.05 0.69 1.46 过渡
    0.80 2.09 1.52 1.67 流土
    下包线
    P<5=42.2%
    0.55 2.07 0.61 1.38 过渡
    0.68 2.11 0.77 1.58 过渡
    0.80 2.15 1.63 1.79 流土
    下载: 导出CSV
  • [1] 郭爱国, 凤家骥, 汪洋, 等. 砂砾石坝料渗透特性试验研究[J]. 武汉水利电力大学学报, 1999, 32(3): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD903.022.htm

    GUO Aiguo, FENG Jiaji, WANG Yang, et al. Experimental research on permeability of sandy gravel for dam mass[J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 1999, 32(3): 93-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD903.022.htm

    [2]

    SATO M, KUWANO R. Suffusion and clogging by one-dimensional seepage tests on cohesive soil[J]. Soils and Foundations, 2015, 55(6): 1427-1440. doi: 10.1016/j.sandf.2015.10.008

    [3] 侯孝东, 涂国祥, 邱潇, 等. 汉源九襄地区深厚砾石层渗透特性研究[J]. 水利与建筑工程学报, 2020, 18(4): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS202004032.htm

    HOU Xiaodong, TU Guoxiang, QIU Xiao, et al. Permeability characteristics of deep gravel layer in Jiuxiang area of Hanyuan[J]. Journal of Water Resources and Architectural Engineering, 2020, 18(4): 192-197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS202004032.htm

    [4] 杨兵, 刘一飞, 万奋涛, 等. 级配特性对砂土渗透系数影响试验研究[J]. 西南交通大学学报, 2016, 51(5): 855-861. doi: 10.3969/j.issn.0258-2724.2016.05.006

    YANG Bing, LIU Yifei, WAN Fentao, et al. Experimental study on influence of particle-size distribution on permeability coefficient of sand[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 855-861. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.05.006

    [5] 樊贵盛, 邢日县, 张明斌. 不同级配砂砾石介质渗透系数的试验研究[J]. 太原理工大学学报, 2012, 43(3): 373-378. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201203028.htm

    FAN Guisheng, XING Rixian, ZHANG Mingbin. Experimental study on permeability of the sandy gravel media with different gradation[J]. Journal of Taiyuan University of Technology, 2012, 43(3): 373-378. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201203028.htm

    [6] 王俊杰, 卢孝志, 邱珍锋, 等. 粗粒土渗透系数影响因素试验研究[J]. 水利水运工程学报, 2013(6): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201306005.htm

    WANG Junjie, LU Xiaozhi, QIU Zhenfeng, et al. Experimental studies on influence factors of permeability coefficients of coarse-grained soil[J]. Hydro-Science and Engineering, 2013(6): 16-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201306005.htm

    [7] 谢定松, 蔡红, 魏迎奇, 等. 覆盖层不良级配砂砾石料渗透稳定特性及影响因素探讨[J]. 水利学报, 2014, 45(增刊2): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2013.htm

    XIE Dingsong, CAI Hong, WEI Yingqi, et al. Discussion of seepage stability characteristic of bad graded sand and gravel overlay[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2013.htm

    [8] 傅华, 凌华, 蔡正银. 砂砾石料渗透特性试验研究[J]. 水利与建筑工程学报, 2010, 8(4): 69-71. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201004022.htm

    FU Hua, LING Hua, CAI Zhengyin. Experimental study on seepage properties of sandy gravel[J]. Journal of Water Resources and Architectural Engineering, 2010, 8(4): 69-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201004022.htm

    [9] 陈生水, 凌华, 米占宽, 等. 大石峡砂砾石坝料渗透特性及其影响因素研究[J]. 岩土工程学报, 2019, 41(1): 26-31. doi: 10.11779/CJGE201901002

    CHEN Shengshui, LING Hua, MI Zhankuan, et al. Experimental study on permeability and its influencing factors for sandy gravel of Dashixia Dam[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 26-31. (in Chinese) doi: 10.11779/CJGE201901002

    [10] 梅世昂, 钟启明, 陈澄昊, 等. 级配特征和水力梯度对砂砾料渗透性影响研究[J]. 人民黄河, 2020, 42(6): 130-134, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202006027.htm

    MEI Shiang, ZHONG Qiming, CHEN Chenghao, et al. Research on the influence of gradation characteristics and hydraulic gradient on permeability of sandy gravel material[J]. Yellow River, 2020, 42(6): 130-134, 139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202006027.htm

    [11] 吴梦喜, 高桂云, 杨家修, 等. 砂砾石土的管涌临界渗透坡降预测方法[J]. 岩土力学, 2019, 40(3): 861-870. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903005.htm

    WU Mengxi, GAO Guiyun, YANG Jiaxiu, et al. A method of predicting critical gradient for piping of sand and gravel soils[J]. Rock and Soil Mechanics, 2019, 40(3): 861-870. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903005.htm

    [12] 朱崇辉, 王增红, 刘俊民. 粗粒土的渗透破坏坡降与颗粒级配的关系研究[J]. 中国农村水利水电, 2006(3): 72-74, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200603031.htm

    ZHU Chonghui, WANG Zenghong, LIU Junmin. Study on the relation between the permeation damage slope and the grain composition of coarse-grained soil[J]. China Rural Water and Hydropower, 2006(3): 72-74, 77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200603031.htm

    [13] 齐俊修, 赵晓菊, 刘艳, 等. 碎砾石和砂渗透变形类型差异性研究[J]. 工程地质学报, 2018, 26(增刊): 618-622. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201810001088.htm

    QI Junxiu, ZHAO Xiaoju, LIU Yan, et al. Study on differences of seepage deformation types of crushed-Gravel and sand[J]. Journal of Engineering Geology, 2018, 26(S1): 618-622. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201810001088.htm

    [14] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Soil Test Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

  • 期刊类型引用(10)

    1. 陆晶晶,李康. 柔性沥青路面病害成因分析及修复措施研究. 建筑机械. 2025(01): 16-21 . 百度学术
    2. 路继红,李丽胜,张沛林. 河西盐渍土地区路面拱胀特征与防治技术措施. 价值工程. 2025(16): 134-136 . 百度学术
    3. 林宇坤,宋玲,刘杰,闫晓亮,朱世煜. 荒漠区沥青路面拱胀病害机理及影响因素分析. 公路交通科技. 2024(04): 31-41 . 百度学术
    4. 张辉,王志杰. 硫酸盐侵蚀作用对ATB力学性能的影响. 安徽建筑. 2024(07): 84-87 . 百度学术
    5. 陆晶晶,刘德功. 尼日利亚某A级公路柔性沥青路面病害分析与路面结构设计. 建筑机械. 2024(11): 10-15 . 百度学术
    6. 张梦媛,丁龙亭,王选仓,谢金生,王孜健. 基于Comsol Multiphysics的半浸泡非饱和水泥基材料水分输运数值模型研究. 重庆大学学报. 2024(12): 45-56 . 百度学术
    7. 张留俊,裘友强,张发如,李雄飞,刘军勇. 降水入渗条件下氯盐渍土水盐迁移规律. 交通运输工程学报. 2023(04): 116-127 . 百度学术
    8. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 . 百度学术
    9. 吴军. 掺入玄武岩纤维的道桥沥青路面复合材料试验分析. 建筑科技. 2023(06): 108-110 . 百度学术
    10. 屈磊,许健,陈忠燕,刘永昊. 新疆盐渍土地区公路纵向开裂机制探讨. 市政技术. 2022(10): 40-44 . 百度学术

    其他类型引用(7)

图(9)  /  表(5)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 17
出版历程
  • 收稿日期:  2023-07-04
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回