Effects of pile length on settlement of root pile-net composite foundation by centrifugal model tests
-
摘要: 某码头堆场软土地基发生了推移,采用树根桩网复合地基进行加固。通过土工离心模型试验研究超大荷载下桩长对树根桩网复合地基沉降特性的影响,试验模拟了地基、树根桩、加筋垫层、防尘网和轨道梁基础、矿石堆载等,分析了超大荷载作用下不同桩长复合地基沉降变化规律。试验结果表明,复合地基表面沉降呈锅形分布,沉降随桩长的增加而减小,分布形状变尖,等长桩沉降远大于设计桩长,分布形状更尖。设计桩长桩网复合地基在350 kPa荷载作用下2 a责任期沉降满足控制在80 cm以内的使用要求,表明树根桩的布置方案合理、可行。Abstract: For the slip of the soft soil foundation in the storage yard of a wharf, the root pile-net composite foundation is used for reinforcement. The geotechnical centrifugal model tests are carried out to study the effects of pile length on settlement characteristics of the root pile-net composite foundation under super-large loads. The foundation, root piles, reinforced cushion, dust net foundation, track beam foundation and ore loads are simulated in the tests. The settlement variation laws of composite foundation with different pile lengths are analyzed the under super-large loads. The surface settlement of the composite foundation is distributed in a pan shape. The settlement decreases with the increase of the pile length, and the distribution shape becomes sharp. The settlement of the equal-length pile scheme is far greater than that of the design length pile scheme, and the distribution shape is sharper. The settlement of the pile-net composite foundation with the design pile length meets the use requirements of controlling within 80 cm under the loads of 350 kPa in two years. The test results show that the arrangement scheme of root piles is reasonable and feasible.
-
-
表 1 土的物理力学性质指标
Table 1 Physical and mechanical indices of soils
土名 厚度/ m 含水率/ % 密度/ (g·cm-3) 不排水强度/kPa 素填土①2 2.87 32.0 1.91 25 粉细砂②2 3.20 1.85 淤泥质黏土②1 9.90 50.8 1.72 40 粉质黏土③4 5.80 31.0 1.92 55 黏土④1、④2 42.3 1.77 67 表 2 设计桩长复合地基表面沉降特征值
Table 2 Characteristic values of surface settlement of composite foundation for design pile length
(单位: mm) 测点 时间节点 堆载期 试堆期 恒载365 d 恒载408 d Sa1 32 49 130 136 Sa2 222 263 375 383 Sa3 308 386 565 574 Sa4 418 514 740 754 Sa5 -34 17 122 129 表 3 不同桩长复合地基表面沉降特征值
Table 3 Characteristic values of surface settlement of composite foundation for different pile lengths
(单位: mm) 桩长 测点 时间节点 堆载期 试堆期 恒载365 d 2 a责任期 设计桩长+2 m Sa1 25 44 125 166 Sa2 128 178 317 335 Sa3 287 352 523 543 Sa4 377 461 638 709 Sa5 19 35 97 130 设计桩长-2 m Sa1 151 160 222 263 Sa2 346 401 540 584 Sa3 423 551 747 819 Sa4 475 589 775 827 Sa5 -14 -4 48 73 等长桩 Sa1 75 90 138 158 Sa2 231 261 368 406 Sa3 313 362 509 557 Sa4 508 590 805 875 Sa5 114 129 191 217 -
[1] 王辉, 陈剑平, 阙金声. 树根桩在基础加固中的设计与应用研究[J]. 岩土力学, 2006, 27(增刊2): 1290-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2006S2117.htm WANG Hui, CHEN Jianping, QUE Jinsheng. Research on design and application of root piles to Strengthening foundations[J]. Rock and Soil Mechanics, 2006, 27(S2): 1290-1294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2006S2117.htm
[2] 顾行文, 谭祥韶, 黄炜旺, 等. 倾斜软土CFG桩复合地基上的路堤破坏模式研究[J]. 岩土工程学报, 2017, 39(增刊1): 111-115. doi: 10.11779/CJGE2017S1022 GU Xingwen, TAN Xiangshao, HUANG Weiwang, et al. Failure mechanisms of embankment on inclined soft foundation reinforced by CFG Piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 111-115. (in Chinese) doi: 10.11779/CJGE2017S1022
[3] 潘高峰, 刘先峰, 袁胜洋, 等. 云桂客专CFG桩网结构路堤侧向变形规律试验研究[J]. 岩土力学, 2020, 41(增刊2): 1-11. doi: 10.16285/j.rsm.2020.0126 PAN Gaofeng, LIU Xianfeng, YUAN Shengyang, et al. Lateral deformation of embankment with the CFG pile-net structure for Yun-Gui passenger dedicated line[J]. Rock and Soil Mechanics, 2020, 41(S2): 1-11. (in Chinese) doi: 10.16285/j.rsm.2020.0126
[4] LIU H L, NG C W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493. doi: 10.1061/(ASCE)1090-0241(2007)133:12(1483)
[5] 姜彦彬, 何宁, 林志强, 等. 路堤深厚软基管桩复合地基数值模拟[J]. 水利水运工程学报, 2018(2): 43-51. doi: 10.16198/j.cnki.1009-640X.2018.02.006 JIANG Yanbin, HE Ning, LIN Zhiqiang, et al. Numerical simulation of pipe pile composite foundation of deep soft foundation under embankment[J]. Hydro-Science and Engineering, 2018(2): 43-51. (in Chinese) doi: 10.16198/j.cnki.1009-640X.2018.02.006
[6] 王年香, 章为民. 土工离心模型试验技术与应用[M]. 北京: 中国建筑工业出版社, 2015. WANG Nianxiang, ZHANG Weimin. Geotechnical Centrifuge Model Test Technology and its Application[M]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
[7] 蔡正银, 徐光明. 港口工程离心模拟技术[M]. 北京: 科学出版社, 2020. CAI Zhengyin, XU Guangming. Centrifugal Simulation Technology of Port Engineering[M]. Beijing: Science Press, 2020. (in Chinese)
[8] 真空预压加固软土地基技术规程: JTS 147-2—2009[S]. 北京: 人民交通出版社, 2009. Technical Specification for Vacuum Preloading Technique to Improve Soft Soils: JTS 147-2—2009[S]. Beijing: China Communications Press, 2009. (in Chinese)
-
期刊类型引用(5)
1. 雷国钦,卢勇,戴泽宇,陈青林,张小普. 细粒级尾砂沉降规律及坝体稳定性研究. 有色金属(中英文). 2025(04): 660-667 . 百度学术
2. 李庚辉,肖启飞,侯英剑. 某选厂高浓度铁尾矿沉积特性试验. 现代矿业. 2025(04): 217-220 . 百度学术
3. 周罕,付俊,陈永贵,余璨,李嘉淇,李艳林. 沟谷上游式尾矿库的水力分选及沉积规律研究. 矿业研究与开发. 2023(08): 147-151 . 百度学术
4. 陈青林,戴泽宇,王晓军,李祖贵,谢锦程,廖敏敏. 不同细粒含量尾矿沉降规律与其沉积体孔隙分布特征研究. 中国安全生产科学技术. 2023(12): 79-85 . 百度学术
5. 李全明,段志杰,于玉贞,师海,李振涛. 尾矿坝沉积结构特征与性能演化规律研究进展. 中国安全生产科学技术. 2022(02): 6-19+2 . 百度学术
其他类型引用(4)