Model tests on relationship between water content and dielectric constant of MSW media
-
摘要: 时域反射测量(TDR)利用水的介电常数与岩土介质介电常数差异较大的特点,由电磁波反射波形分析得到岩土介质的介电常数和电导率,并通过经验关系换算获得含水率。目前,在岩土工程领域采用TDR测试含水率的研究及应用多局限于土介质,很少有关于城市固体废弃物(MSW)方面的研究。采用一种基于表面反射法原理研制的四针式TDR传感器,通过室内标定试验建立MSW介质含水率与其介电常数的经验关系模型,该模型考虑了介质孔隙率的影响,基于该模型的TDR测试结果与烘干法测试结果的误差不超过±5%。
-
关键词:
- 城市固体废弃物(MSW) /
- 时域反射测量(TDR) /
- 表面反射法 /
- 介质 /
- 含水率
Abstract: The time domain reflectometry (TDR) takes advantage of the large difference of dielectric constants between water and soils. The dielectric constant and conductivity of soils are obtained from the analysis of the electromagnetic wave reflection waveform, and the water content of soils is obtained through empirical conversion. At present, the researches and application of using TDR to test the water content in the field of geotechnical engineering are mostly limited to soil media, and there are few studies on the municipal solid waste (MSW). In this study, a four-pin TDR sensor developed based on the principle of surface reflection method is used to establish an empirical relationship model between the water content of the MSW media and their dielectric constant through indoor calibration experiments. This empirical relationship model takes into account the influences of the porosity of MSW media. The error of the test results between the TDR technology based on the above empirical relationship model and the drying method does not exceed ±5%. -
-
图 2 表面反射法的测试原理及典型反射波形[3]
Figure 2. Testing principle of surface reflection method and typical reflection waveform
-
[1] TOPP G C, DAVIS J L. Measurement of soil water content using time-domain reflectrometry (TDR): a field evaluation[J]. Soil Science Society of America Journal, 1985, 49(1): 19-24. doi: 10.2136/sssaj1985.03615995004900010003x
[2] CHEN R P, DRNEVICH V P, YU X, et al. Time domain reflectometry surface reflections for dielectric constant in highly conductive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1597-1608. doi: 10.1061/(ASCE)1090-0241(2007)133:12(1597)
[3] CHEN R P, XU W, CHEN Y M. Measuring dielectric constant in highly conductive soils based on surface reflection coefficients[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1883-1891. doi: 10.1061/(ASCE)GT.1943-5606.0000170
[4] CHEN Y M, WANG H L, CHEN R P, et al. A newly designed TDR probe for soils with high electrical conductivities[J]. Geotechnical Testing Journal, 2014, 37(1): 20120227. doi: 10.1520/GTJ20120227
[5] CHEN R P, CHEN Y, CHEN W, et al. Time domain reflectometry for water content measurement of municipal solid waste[J]. Environmental Engineering Science, 2012, 29(6): 486-493. doi: 10.1089/ees.2010.0489
[6] RAMO S, WHINNERY J R, DUZER T V. Fields and Waves in Communication Electronics [M]. 3ed. Hoboken: John Wiley and Sons, 1994.
[7] TOPP G C, YANUKA M, ZEBCHUK W D, et al. Determination of electrical conductivity using time domain reflectometry: soil and water experiments in coaxial lines[J]. Water Resources Research, 1988, 24(7): 945-952.
[8] American Society for Testing and Materials. Standard test method for water content and density of soil in place by time domain reflectometry(TDR): D6780-05 [S]. West Conshohocken: American Society for Testing and Materials(ASTM). 2005.
[9] 王进学. 离子污染饱和无黏性土电导率特性及TDR测试技术[D]. 杭州: 浙江大学, 2007. WANG Jinxue. Electrical Conductivities of Ionic Contaminated Saturated Sandy Soils and TDR Measurement[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
-
期刊类型引用(1)
1. 王得伟,王旭峰,尤泳,王天一,惠云婷,王德成. 基于微结构量化的枣园根土复合体各向异性试验. 农业机械学报. 2024(11): 402-416 . 百度学术
其他类型引用(0)