Application of non-destructive detection technology to underground diseases of roads based on transient surface wave method
-
摘要: 针对杭州市某道路产生塌陷和裂缝的问题,利用瞬态面波法开展道路地下病害无损探测。根据地基波速试验探测结果分析不同地层情况,确定道路地下病害范围,为处理道路安全隐患提供了及时准确的数据资料。探测结果表明,道路下方7 m范围内存在土体疏松病害,给出的建议为部分区域进行注浆加固,部分区域清除表面碎石;瞬态面波法图像直观、经济快速,能够确定出具有工程灾害隐患的病害,为道路的检修和维护提供充分的科学依据。Abstract: In view of the collapse and crack of a road in Hangzhou city, the transient surface wave method is used for detecting the underground diseases. Based on the ground wave velocity tests, the stratum properties under different conditions and the distribution of underground diseases of the road can be determined, which provides timely and accurate data for handling its safety hazards. The detected results show that the soil mass is loose within 7 m below the road, and the suggestions given are grouting reinforcement in some areas and removal of surface gravel in some areas. The image of transient surface wave method is intuitive, economical and fast, which can identify the diseases with potential engineering disasters, and it provides sufficient scientific basis for the repair and maintenance of roads.
-
Keywords:
- non-destructive test /
- transient surface wave /
- survey line /
- road /
- disease
-
-
表 1 各分层剪切波速
Table 1 Shear wave velocities of soil layers
深度范围/m 土层名称 标准波速Vs/(m·s-1) 0.8~1.9 素填土 132 1.9~4.2 砂质粉土 152 4.2~7.4 砂质粉土夹粉砂 172 7.4~14.4 砂质粉土 185 14.4~28.9 淤泥质粉质黏土 112 -
[1] 《中国公路学报》编辑部. 中国交通隧道工程学术研究综述·2022[J]. 中国公路学报, 2022, 35(4): 1-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202204001.htm Editorial Department of China Journal of Highway and Transport. Review on China's traffic tunnel engineering research 2022[J]. China Journal of Highway and Transport, 2022, 35(4): 1-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202204001.htm
[2] 王栩, 王志辉, 陈昌昕, 等. 城市地下空间地球物理探测技术与应用[J]. 地球物理学进展, 2021, 36(5): 2204-2214. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202105044.htm WANG Xu, WANG Zhihui, CHEN Changxin, et al. Geophysical exploration and application for urban underground space[J]. Progress in Geophysics, 2021, 36(5): 2204-2214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202105044.htm
[3] 李世念, 王秀荣, 林恬, 等. 基于GprMax的道路空洞三维探地雷达正演数值模拟[J]. 中国地质灾害与防治学报, 2020, 31(3): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202003023.htm LI Shinian, WANG Xiurong, LIN Tian, et al. Numerical simulation of 3D ground penetrating radar based on GprMax for the road cavity[J]. The Chinese Journal of Geological Hazard and control, 2020, 31(3): 132-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202003023.htm
[4] 龙慧, 谢兴隆, 李凤哲, 等. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4): 808-815. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202204003.htm LONG Hui, XIE Xinglong, LI Fengzhe, et al. 2D seismic and high-density resistivity sounding reveal the shallow 3D geological structure characteristics of Xiong'an New Area[J]. Geophysical and Geochemical Exploration, 2022, 46(4): 808-815. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202204003.htm
[5] 司友强, 呙润华, 李梦茹. 道路空洞无损探测技术发展研究[J]. 公路, 2020, 65(2): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202002007.htm SI Youqiang, GUA Runhua, LI Mengru. Research on the development of road cavity non-destructive detection technology[J]. Highway, 2020, 65(2): 29-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202002007.htm