Rate-dependent experimental study on unsaturated coarse-grained soil controlled by matrix suction
-
摘要: 为研究山区高填方路基的时效变形特性,针对路基粗颗粒填料,开展了粗颗粒填料持水特性和一系列常吸力作用下的率相关力学特性试验,采用三种不同剪切速率对试样进行剪切,分析围压、基质吸力及剪切速率对土体强度和变形特征的影响。试验结果表明:粗颗粒填料的土水特征曲线未出现残余吸力值;不同围压下粗颗粒填料的峰值强度可表示为基质吸力的函数,基质吸力越大,非饱和粗粒土的剪切强度越高,且体积剪缩变形越小;非饱和粗粒土的强度与体积变形均受剪切速率的影响,且变化趋势表现出高度一致性,剪切速率越大,试样强度越高,对应的体积变形越小。Abstract: To study the time-dependent deformation characteristics of high-fill subgrade in mountainous areas, the water-retention characteristics of coarse filler and a series of rate-dependent mechanical properties tests under constant suction are carried out for the coarse filler of subgrade. Three different shear rates are used to shear the samples, and the effects of confining pressure, matrix suction and shear rate on the strength and deformation characteristics of soil are analyzed. The test results show that there is no residual suction value in the soil-water characteristic curve of coarse filler. The peak strength of coarse-grained fill under different confining pressures can be expressed as a function of matrix suction. The greater the matrix suction, the higher the shear strength of unsaturated coarse-grained soil, and the smaller the volume shear deformation. The strength and volume deformation of unsaturated coarse-grained soil are affected by the shear rate, and the change trend shows high consistency. The higher the shear rate, the higher the sample strength, and the smaller the corresponding volume deformation.
-
-
表 1 试验控制条件
Table 1 Control conditions in tests
围压σ3/kPa 基质吸力S/kPa 剪切速率v/(mm·min-1) 100,200 50,100,200 0.011 100 50,100,200 0.011,0.005,0.0025 表 2 峰值强度拟合参数值
Table 2 Values of fitting parameters of peak strength
围压σ/kPa a b R2 100 6.358 48.834 0.996 200 28.619 219.054 0.907 -
[1] 谢毅, 肖杰. 高速铁路发展现状及趋势研究[J]. 高速铁路技术, 2021, 12(2): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202102004.htm XIE Yi, XIAO Jie. Research on high-speed railway development status and trend[J]. High Speed Railway Technology, 2021, 12(2): 23-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202102004.htm
[2] 朱颖, 魏永幸, 蒋登伟, 等. 复杂艰险山区高速铁路减灾选线设计研究[J]. 高速铁路技术, 2020, 11(2): 7-11, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002003.htm ZHU Ying, WEI Yongxing, JIANG Dengwei, et al. Research on route selection design of high-speed railway for disaster reduction in complex and dangerous mountain[J]. High Speed Railway Technology, 2020, 11(2): 7-11, 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002003.htm
[3] LI T R, LIU J G, DING Y Q, et al. Effects of moisture and compactness on uniaxial dynamic compression of sandy soil under high strain rates[J]. Transportation Geotechnics, 2022, 34: 100757. doi: 10.1016/j.trgeo.2022.100757
[4] TOYOTA H, TAKADA S, SUSAMI A. Rate dependence on mechanical properties of unsaturated cohesive soil with stress-induced anisotropy[J]. Soils and Foundations, 2019, 59(4): 1013-1023. doi: 10.1016/j.sandf.2019.04.001
[5] WOONGJU M, MCCARTNEY JOHN S. Rate effects in constant rate of strain compression tests on unsaturated soils to high pressures[J]. Stand Alone, 2015, 0: 1983-1990.
[6] CAI G Q, SU Y L, ZHOU A N, et al. An elastic-viscoplastic model for time-dependent behavior of unsaturated soils[J]. Computers and Geotechnics, 2023, 159: 105415. doi: 10.1016/j.compgeo.2023.105415
[7] 胡田飞, 刘建坤, 刘振亚, 等. 粉质黏土强度特性应变速率效应的试验研究[J]. 铁道学报, 2018, 40(2): 132-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201802020.htm HU Tianfei, LIU Jiankun, LIU Zhenya, et al. Experimental study on strain rate effect of strength characteristics of silty clay[J]. Journal of the China Railway Society, 2018, 40(2): 132-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201802020.htm
[8] WU S S, ZHOU A N, SHEN S L, et al. Influence of different strain rates on hydro-mechanical behaviour of reconstituted unsaturated soil[J]. Acta Geotechnica, 2020, 15(12): 3415-3431. doi: 10.1007/s11440-020-01026-3
[9] TATSUOKA F, DI BENEDETTO H, ENOMOTO T, et al. Various viscosity types of geomaterials in shear and their mathematical expression[J]. Soils and Foundations, 2008, 48(1): 41-60. doi: 10.3208/sandf.48.41
[10] KAMOUN J, BOUASSIDA M. Creep behavior of unsaturated cohesive soils subjected to various stress levels[J]. Arabian Journal of Geosciences, 2018, 11(4): 1-7.
[11] YAO W M, HU B, ZHAN H B, et al. A novel unsteady fractal derivative creep model for soft interlayers with varying water contents[J]. KSCE Journal of Civil Engineering, 2019, 23(12): 5064-5075. doi: 10.1007/s12205-019-1820-5
[12] LAI X L, WANG S M, YE W M, et al. Experimental investigation on the creep behavior of an unsaturated clay[J]. Canadian Geotechnical Journal, 2014, 51(6): 621-628. doi: 10.1139/cgj-2013-0064
[13] ZHANG C A, LI J Z, HE Y. Experimental study on viscoplastic property of unsaturated reticulate red clay used as an engineered barrier[J]. Geofluids, 2020, 2020: 1-13.
[14] 王智超, 罗磊, 田英辉, 等. 非饱和压实土率敏性及蠕变时效特征试验研究[J]. 岩土力学, 2022, 43(7): 1816-1824, 1844. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207007.htm WANG Zhichao, LUO Lei, TIAN Yinghui, et al. Experimental study on time-dependent characteristics of rate-sensitivity and creep of unsaturated compacted soil[J]. Rock and Soil Mechanics, 2022, 43(7): 1816-1824, 1844. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207007.htm
[15] CHEN W B, LIU K, FENG W Q, et al. Influence of matric suction on nonlinear time-dependent compression behavior of a granular fill material[J]. Acta Geotechnica, 2020, 15(3): 615-633.
[16] 刘梓萌. 砂质Q3黄土变形特性及温度效应的试验研究[D]. 北京: 北京交通大学, 2020. LIU Zimeng. Experimental Study on Deformation Characteristics and Temperature Effect of Sandy Q3 Loess[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
[17] 刘倩倩, 李舰, 蔡国庆, 等. 全吸力范围的盐渍土持水特性的试验研究[J]. 岩土力学, 2021, 42(3): 713-722. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103014.htm LIU Qianqian, LI Jian, CAI Guoqing, et al. Experimental study on water retention characteristics of saline soil in the full suction range[J]. Rock and Soil Mechanics, 2021, 42(3): 713-722. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103014.htm
[18] PINCUS H J, YAMAMURO J A, LADE P V. Effects of strain rate on instability of granular soils[J]. Geotechnical Testing Journal, 1993, 16(3): 304.
[19] ZHANG Y A, ISHIKAWA T, TOKORO T, et al. Influences of degree of saturation and strain rate on strength characteristics of unsaturated granular subbase course material[J]. Transportation Geotechnics, 2014, 1(2): 74-89.
[20] ROJAS J C, MANCUSO C, HAMZA M, et al. Effect of loading rate on the behaviour of unsaturated soils[C]// International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, Alexandria, Egypt. 5–9 October. 2009.