• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

基于赤玉土强冻胀特性提高重金属污染黏性土淋洗效率研究

芮大虎, 王嘉义, 张军, 潘卫东, 王淼

芮大虎, 王嘉义, 张军, 潘卫东, 王淼. 基于赤玉土强冻胀特性提高重金属污染黏性土淋洗效率研究[J]. 岩土工程学报, 2025, 47(7): 1373-1381. DOI: 10.11779/CJGE20231295
引用本文: 芮大虎, 王嘉义, 张军, 潘卫东, 王淼. 基于赤玉土强冻胀特性提高重金属污染黏性土淋洗效率研究[J]. 岩土工程学报, 2025, 47(7): 1373-1381. DOI: 10.11779/CJGE20231295
RUI Dahu, WANG Jiayi, ZHANG Jun, PAN Weidong, WANG Miao. Improvement of washing efficiency of heavy metal-contaminated clayey soils based on strong frost-heave characteristics of Akadama soil[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1373-1381. DOI: 10.11779/CJGE20231295
Citation: RUI Dahu, WANG Jiayi, ZHANG Jun, PAN Weidong, WANG Miao. Improvement of washing efficiency of heavy metal-contaminated clayey soils based on strong frost-heave characteristics of Akadama soil[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1373-1381. DOI: 10.11779/CJGE20231295

基于赤玉土强冻胀特性提高重金属污染黏性土淋洗效率研究  English Version

基金项目: 

国家自然科学基金项目 42471155

国家自然科学基金项目 42407269

冻土工程国家重点实验室项目 SKLFSE20191702

黑龙江省自然科学基金项目 LH2024D025

详细信息
    作者简介:

    芮大虎(1969—),男,博士,教授,主要从事环境岩土与城市地下工程等方面的教学和研究工作。E-mail: dhrui@hpu.edu.cn

    通讯作者:

    张军, E-mail: junzhang2018@126.com

  • 中图分类号: TU445

Improvement of washing efficiency of heavy metal-contaminated clayey soils based on strong frost-heave characteristics of Akadama soil

Funds: 

the National Natural Science Foundation of China 42471155

the National Natural Science Foundation of China 42407269

Open Fund Project of State Key Laboratory of Frozen Soil Engineering SKLFSE20191702

the Natural Science Foundation of Heilongjiang Province LH2024D025

  • 摘要: 冻融协同化学淋洗能够去除黏性土中重金属污染物,但是冻结过程中淋洗液摄入量少,存在淋洗效率低下的问题。利用改善黏性土冻胀性增加水分迁移量以提高淋洗效率的思路,以重金属污染黏性土为研究对象,选用强冻胀性赤玉土为掺料土,开展了土柱冻融-淋洗试验。结果表明,相同冻结条件下赤玉土的冻胀率为124.48%,其冻胀量和吸水量分别为黏性土的5.85倍和4.82倍,具有极强冻胀性;赤玉土对Pb、Cd吸附能力较弱,可以重复利用;掺入赤玉土后黏性土的冻胀量和吸水量显著增加,最大增幅分别为130.91%,113.39%;经3次冻融后,Pb、Cd去除率分别达到57.51%,66.77%,相较未掺入赤玉土组提升173.73%,113.94%。SEM试验表明冻融循环后赤玉土结构破碎严重且孔隙数量增加,有利于水分的迁移和储存。赤玉土作为掺料土提高冻融-淋洗效率的方法在实际工程应用中具有易操作性和普适性,为季节冻土区重金属污染黏性土修复提供了一个新的思路。
    Abstract: The freeze-thaw synergistic chemical washing can remove heavy metal contaminants from clayey soils. However, the intake of eluent is low during the freezing process, resulting in low washing efficiency. Based on the idea of improving the frost heave of clayey soils and increasing water migration to improve the leaching efficiency, the freeze-thaw-leaching tests on soil columns are carried out by taking heavy metal-contaminated clayey soils as the research object and selecting strong frost-heave Akadama soil as the admixture. The results indicate that under the same freezing conditions, the frost-heave rate of Akadamas soil 124.48%, with the corresponding increase in the frost-heave amount and water intake of 5.85 times and 4.82 times that of clayey soils, respectively. This indicates an extremely strong frost-heave characteristic. The adsorption capacity of Akadama soil for Pb and Cd is weak, and it can be reused. After incorporating Akadama soil, the frost-heave amount and water intake of clayey soils significantly increase, with the maximum increments of 130.91% and 113.39%, respectively. After three freeze-thaw cycles, the removal rates of Pb and Cd reach 57.51% and 66.77%, respectively, representing an increase of 173.73% and 113.94% compared to those of the control group without Akadama soil. The SEM tests show that the structure of Akadama soil is severely broken and the number of pores increases, which is conducive to the migration and storage of water after freeze-thaw cycles. The method of using Akadama soil as an admixture soil to improve the freeze-thaw leaching efficiency has operability and universality in practical engineering applications. It provides a new approach for the remediation of heavy metal-contaminated clayey soils in seasonal frozen regions.
  • 利益冲突声明/Conflict of Interests:所有作者声明不存在利益冲突。All authors disclose no relevant conflict of interest.
    作者贡献/Authors' Contributions:芮大虎、王嘉义和潘卫东参与实验设计;王嘉义和张军完成实验操作;芮大虎、王嘉义、张军和王淼参与论文的写作和修改。所有作者均阅读并同意最终稿的提交。The study was designed by Rui Dahu, Wang Jiayi and Pan Weidong. The experimental operation was completed by Wang Jiayi and Zhang Jun. The manuscript was drafted and revised by Rui Dahu, Wang Jiayi, Zhang Jun and Wang Miao. All the authors have read the last version of paper and consented for submission.
  • 图  1   冻融-淋洗机制示意图

    Figure  1.   Schematic diagram of freeze-thaw and washing mechanism

    图  2   单向冻结试验装置示意图

    Figure  2.   Schematic diagram of unidirectional freezing test devices

    图  3   土柱上、下端的温控曲线

    Figure  3.   Temperature control curves at top and bottom of soil columns

    图  4   土柱冻胀-吸水曲线

    Figure  4.   Frost heave-water intake curves of soil columns

    图  5   土柱分凝冰层和冷生构造(左侧为黏性土,右侧为赤玉土)

    Figure  5.   Segregated ice layer and cryostructure of soil columns (left: clayey soil, right: Akadama soil)

    图  6   土柱冻结锋面随时间变化曲线

    Figure  6.   Curves of freezing front of soil columns with time

    图  7   冻融前后试样微观结构

    Figure  7.   Microstructure of samples before and after freeze-thaw

    图  8   不同工况条件下冻融-淋洗试验结果

    Figure  8.   Freeze-thaw and washing test results under different conditions

    图  9   混合土样微观结构图

    Figure  9.   Microstructure of mixed soil column

    图  10   土柱冻胀-吸水曲线

    Figure  10.   Frost heave-water intake curves

    图  11   淋滤液中重金属浓度及质量

    Figure  11.   Concentrations and quality of heavy metals in leachate

    图  12   混合土柱冻融-淋洗后土壤中重金属浓度垂直分布

    Figure  12.   Vertical distribution of heavy metal concentrations after freeze-thaw and washing of mixed soil columns

    图  13   分层土柱冻融-淋洗后土壤中重金属浓度垂直分布

    Figure  13.   Vertical distribution of heavy metal concentrations after freeze-thaw and washing of separated soil columns

    表  1   试验土样基本理化性质

    Table  1   Basic physical and chemical properties of test soil samples

    土样 土颗粒密度
    ρs/(g·cm-3)
    界限含水率 击实性能 颗粒分布/% Pb含量/
    (mg·kg-1)
    Cd含量/
    (mg·kg-1)
    wL/% wP/% Ip ρdmax/(g·cm-3) wop/% ≥0.25 mm 0.075~0.25 mm ≤0.075 mm
    黏性土 2.57 36.71 26.67 10.04 1.54 21.77 13.82 10.28 75.90 5237.56 764.51
    赤玉土 2.16 69.53 53.24 16.29 0.99 59.60 19.06 11.15 69.79
    下载: 导出CSV

    表  2   冻融-淋洗试验方案设计

    Table  2   Freeze-thaw and washing test schemes

    试验编号 掺量/% 试样制备 密度/(g·cm-3) 冻结速率/(℃·h-1) 淋洗液 冻融次数 备注
    FTW1-1 1.23 0.2 0.05 mol/L EDTA 1 黏性土
    FTW1-2M 13.75 混合装填 1.14 1 赤玉土和黏性土混合
    FTW1-2S 13.75 分层装填 赤玉土;0.79
    黏性土:1.23
    1 赤玉土1 cm, 黏性土4 cm
    FTW1-3M 29.79 混合装填 1.04 1 赤玉土和黏性土混合
    FTW1-3S 29.79 分层装填 赤玉土;0.79
    黏性土:1.23
    1 赤玉土2 cm, 黏性土3 cm
    FTW3-1 29.79 分层装填 赤玉土;0.79
    黏性土:1.23
    3 赤玉土2 cm, 黏性土3 cm
    FTW3-2 1.23 3 黏性土
    下载: 导出CSV
  • [1]

    ZHAO K L, ZHANG L Y, DONG J Q, et al. Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China[J]. Geoderma, 2020, 360: 114011. doi: 10.1016/j.geoderma.2019.114011

    [2]

    YANG Y, YANG X, HE M J, et al. Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis[J]. Catena, 2020, 185: 104297. doi: 10.1016/j.catena.2019.104297

    [3]

    ZHAO H, WU Y, LAN X, et al. Comprehensive assessment of harmful heavy metals in contaminated soil in order to score pollution level[J]. Sci Rep, 2022, 12(1): 3552. doi: 10.1038/s41598-022-07602-9

    [4] 芮大虎, 武智鹏, 武迎飞, 等. 冻融-化学淋洗法协同修复重金属Cd和Pb污染黏性土[J]. 农业工程学报, 2018, 34(23): 199-205.

    RUI Dahu, WU Zhipeng, WU Yingfei, et al. Synergistic remediation of heavy metal Cd and Pb contaminated clay by freeze-thaw and chemical washing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 199-205. (in Chinese)

    [5] 芮大虎, 张军, 武迎飞, 等. 冻融作用下特定污染物的清洗试验研究[J]. 土木建筑与环境工程, 2017, 39(4): 69-75.

    RUI Dahu, ZHANG Jun, WU Yingfei, et al. Flushing remediation with specific pollutants based on freezing and thawing[J]. Journal of Civil, Architectural & Environmental Engineering, 2017, 39(4): 69-75. (in Chinese)

    [6]

    WANG L W, RINKLEBE J, TACK F M G, et al. A review of green remediation strategies for heavy metal contaminated soil[J]. Soil Use and Management, 2021, 37(4): 936-963. doi: 10.1111/sum.12717

    [7]

    AZHAR U, AHMAD H, SHAFQAT H, et al. Remediation techniques for elimination of heavy metal pollutants from soil: a review[J]. Environmental Research, 2022, 214: 113918. doi: 10.1016/j.envres.2022.113918

    [8]

    SHAO Y Y, YAN T, WANG K, et al. Soil heavy metal lead pollution and its stabilization remediation technology[J]. Energy Reports, 2020, 6: 122-127. doi: 10.1016/j.egyr.2020.11.074

    [9]

    LIU J, ZHAO L, LIU Q, et al. A critical review on soil washing during soil remediation for heavy metals and organic pollutants[J]. International Journal of Environmental Science and Technology, 2022, 19(1): 601-624. doi: 10.1007/s13762-021-03144-1

    [10]

    GU F, ZHANG J P, SHEN Z Q, et al. A review for recent advances on soil washing remediation technologies[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(4): 651-658. doi: 10.1007/s00128-022-03584-6

    [11]

    ZHENG X J, LI Q, PENG H, et al. Remediation of heavy metal-contaminated soils with soil washing: a review[J]. Sustainability, 2022, 14(20): 13058. doi: 10.3390/su142013058

    [12]

    SEMER R, REDDY K R. Evaluation of soil washing process to remove mixed contaminants from a sandy loam[J]. Journal of Hazardous Materials, 1996, 45(1): 45-57. doi: 10.1016/0304-3894(96)82887-1

    [13]

    MULLIGAN C N, YONG R N, GIBBS B F. Surfactant-enhanced remediation of contaminated soil: a review[J]. Engineering Geology, 2001, 60(1/2/3/4): 371-380.

    [14]

    RUI D H, NIE W J, KIM M, et al. Remediation of large-scale model experiment for heavy metal contaminated clayey soil: an optimized mass transfer process strategy of freeze-thaw and washing[J]. Cold Regions Science and Technology, 2023, 216: 104006. doi: 10.1016/j.coldregions.2023.104006

    [15]

    WU T, RUI D H, ZHANG J, et al. Removal of heavy metal pollutant from clayey soil based on repeated ice-segregation: a laboratory evaluation[J]. Cold Regions Science and Technology, 2022, 201: 103626. doi: 10.1016/j.coldregions.2022.103626

    [16] 芮大虎, 武迎飞, 陈雪, 等. 复合冻融与淋洗方法修复重金属污染黏性土的研究[J]. 岩土工程学报, 2019, 41(2): 286-293. doi: 10.11779/CJGE201902006

    RUI Dahu, WU Yingfei, CHEN Xue, et al. Remediation of heavily metal-contaminated clayey soils by composite freeze-thaw and soil washing method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 286-293. (in Chinese) doi: 10.11779/CJGE201902006

    [17]

    CHEN R Z, ZHANG Z Y, FENG C P, et al. Batch study of arsenate (Ⅴ) adsorption using Akadama mud: Effect of water mineralization[J]. Applied Surface Science, 2010, 256(9): 2961-2967. doi: 10.1016/j.apsusc.2009.11.058

    [18]

    ZHAO Y X, YANG S J, DING D H, et al. Effective adsorption of Cr (Ⅵ) from aqueous solution using natural Akadama clay[J]. Journal of Colloid and Interface Science, 2013, 395: 198-204. doi: 10.1016/j.jcis.2012.12.054

    [19]

    DING D H, LEI Z F, YANG Y N, et al. Efficiency of transition metal modified akadama clay on cesium removal from aqueous solutions[J]. Chemical Engineering Journal, 2014, 236: 17-28. doi: 10.1016/j.cej.2013.09.075

    [20] 王家澄, 徐学祖, 张立新, 等. 土类对正冻土成冰及冷生组构影响的实验研究[J]. 冰川冻土, 1995, 17(1): 15-22.

    WANG Jiacheng, XU Xuezu, ZHANG Lixin, et al. Experimental study on the influence of soil types on ice formation and cold fabric of frozen soil[J]. Journal of Glaciology and Geocryology, 1995, 17(1): 15-22. (in Chinese)

    [21]

    RUI D H, WU Z P, JI M, et al. Remediation of Cd- and Pb-contaminated clay soils through combined freeze-thaw and soil washing[J]. Journal of Hazardous Materials, 2019, 369: 87-95.

    [22]

    WANG Y R, RUI D H, NIE W J, et al. Remediation of Pb- and, Cd-contaminated soil through magnetic-modified eluent synergetic freeze-thaw and washing[J]. Cold Regions Science and Technology, 2023, 216: 104000.

    [23]

    HUANG K Y, SHEN Y J, WANG X Y, et al. Choline-based deep eutectic solvent combined with EDTA-2Na as novel soil washing agent for lead removal in contaminated soil[J]. Chemosphere, 2021, 279: 130568.

    [24] 徐斅祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010: 41-42.

    XU Xiaozu, WANG Jiacheng, ZHANG Lixin. Frozen Soil Physics[M]. Beijing: Science Press, 2010: 41-42. (in Chinese)

    [25] 芮大虎, 张勇, 张鹏飞, 等. 一种室内冻融设备的变水头渗透实验装置[P]. CN 204514767U. 2015-07-29.

    RUI Dahu, ZHANG Yong, ZHANG Pengfei, et al. A Variable Head Permeability Experimental Device For Indoor Freeze-Thaw Equipment[P]. CN 204514767U. 2015-07-29. (in Chinese)

  • 期刊类型引用(1)

    1. 王得伟,王旭峰,尤泳,王天一,惠云婷,王德成. 基于微结构量化的枣园根土复合体各向异性试验. 农业机械学报. 2024(11): 402-416 . 百度学术

    其他类型引用(0)

图(13)  /  表(2)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  11
  • PDF下载量:  26
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2025-02-26
  • 录用日期:  2025-03-20
  • 网络出版日期:  2025-03-21
  • 发布日期:  2025-03-21
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回