Modification of structured Cam-clay model based on triaxial undrained effective stress path
-
摘要: 室内外试验和工程实践都表明天然沉积黏土具有一定的结构性,因此建立结构性本构模型对准确预测天然黏土的力学响应和解决实际岩土工程问题具有重要意义。首先,基于结构性黏土的三轴固结不排水试验的有效应力路径对结构性剑桥(SCC)模型进行了两点改进:①对附加孔隙比Δe的计算公式进行了修正,可以准确模拟结构性黏土超过临界状态线后的有效应力路径;②考虑了屈服面内的塑性即亚屈服特性,可以较好地模拟屈服面内的有效应力路径。然后,利用修正结构性剑桥(MSCC)模型对结构性黏土的侧限压缩试验、三轴固结不排水和三轴固结排水试验进行了模拟计算,并与试验结果和SCC模型的计算结果进行了对比分析,结果表明MSCC模型可以更好地模拟结构性黏土的三轴不排水有效应力路径以及侧限压缩和三轴固结排水试验的应力应变曲线。最后,对MSCC模型中的参数β(屈服面内塑性变形参数)、p'yi(初始结构屈服应力)、Δei(初始附加孔隙比)、b(结构破损速率)、γ(剪切引起结构破损的参数)和ω(反映结构性对塑性流动准则的影响)进行了参数敏感性分析,结果表明参数β影响结构性黏土屈服面内的有效应力路径,参数p'yi影响峰值强度,参数Δei影响残余强度,参数b和γ影响峰值后的强度衰减速率,参数ω影响强度开始衰减时的偏应变大小。Abstract: Both laboratory and in-situ tests and engineering practices show that naturally sedimented clays have a specific structure. Therefore, establishing a structural constitutive model is of great significance in accurate predicting the mechanical responses of natural clays and solving practical geotechnical engineering problems. Firstly, based on the effective stress path of the consolidated undrained triaxial tests on structured clay, two improvements are made to the structured Cam-clay (SCC) model: (1) The formula for calculating the additional void ratio Δe is modified, which can accurately simulate the effective stress path of the structured clay beyond the critical state line. (2) Considering the plasticity in the yield surface, i.e., subyielding characteristic, the effective stress path in the yield surface can be well simulated. Then, the modified structured Cam-clay (MSCC) model is used to simulate the confined compression tests, the consolidated undrained and drained triaxial tests on the structured clay. The calculated results are compared with the experimental ones and those by the SCC model. The results show that the MSCC model can better simulate the triaxial undrained effective stress path and stress-strain curves of the confined compression and consolidated drained triaxial tests on the structured clay. Finally, the sensitivity analyses of parameters β (plastic deformation parameter in yield surface), p'yi (initial structural yield stress), Δei (initial additional void ratio), b (structure degradation rate), γ (shear-induced structure degradation parameter) and ω (reflecting the influences of soil structure on plastic flow criterion) in the MSCC model are carried out. The results show that parameter β affects the effective stress path in the yield surface of structured clay, parameter p'yi affects peak strength, parameter Δei affects the residual strength, parameters b and γ affect the strength degradation rate after the peak value, and parameter ω affects the magnitude of deviatoric strain when the strength begins to degrade.
-
0. 引言
足尺试验是了解盾构隧道结构力学行为的有效方法。许多学者开展了足尺管片接头试验来研究纵缝接头的变形特征和力学特性[1-3]。隧道管片纵缝接头在持续加载作用下的力学性能是以往研究的重点,而很少研究在应用修复措施治理隧道大变形时纵向接缝的变形和力学特性、可恢复性以及恢复效率[4]。
本文通过开展盾构隧道拱顶双缝接头和拱腰单缝接头的原型足尺试验,旨在探究两类接头在隧道上方堆载作用下的变形发展规律,分析盾构隧道管片在恢复过程中各性态特征的演化规律,评价不同既有变形条件下隧道管片不同部位接头变形的恢复效果。
1. 接头试件设计
本文针对上海地铁隧道运用的管片衬砌环中的纵缝接头进行一系列室内结构原型试验,隧道衬砌环和纵缝接头构造形式如图 1所示。试验试件包括两类接头,分别为位于隧道管片环拱顶位置受正弯矩作用的纵缝接头(即封顶块和邻接块连接处接头,以下称为拱顶接头)和位于隧道管片环拱腰位置受负弯矩作用的纵缝接头(即邻接块和标准块连接处接头,以下称为拱腰接头),如图 2所示。弯矩以衬砌环内侧受拉为正,轴力以受压为正。
值得注意的是,隧道拱腰和拱脚纵缝是径向平直面,而拱顶纵缝是与径向斜交的平直面,拱顶纵缝接头是楔形结构,见图 1(a)。然而,以往研究中采用的是简化的如拱腰一样的直缝结构,不能准确描述拱顶处实际的斜接缝构造的力学行为。本文采用隧道拱顶双接头形式进行试验研究。
2. 管片接头内力计算
采用考虑接头非线性刚度的盾构隧道衬砌分析模型[5]计算接头内力(弯矩、轴力和剪力)。如图 3所示,隧道埋深15 m,周围土体为典型的上海软土,饱和重度(γ)为18 kN/m3,静止侧压力系数(K0)为0.65,地层抗力系数(KS)为6000 kN/m3。该模型首先通过对隧道结构施加竖向压力来模拟地面超载对隧道变形的影响。然后,通过移除竖向压力来模拟卸载。最后,通过对隧道结构施加侧向压力模拟注浆对隧道变形的恢复作用。根据接头内力计算结果可以确定足尺试验中对应不同工况的加载路径。
试验中,通过水平和垂直液压千斤顶向试件施加水平载荷和垂直载荷,以模拟接头内力(即弯矩、轴力和剪力),见图 2中(a)和(b)。图 4和图 5分别为试验中拱顶接头和拱腰接头的受力分析图。根据力矩平衡方程,拱顶接头试件和拱腰接头试件的外部载荷和内力之间的关系可由式(1)和式(2)分别推导得到。
{M=G⋅L2+P⋅(L2−L1)−N′⋅hN=N′⋅cosθ+12G⋅sinθQ=N′⋅sinθ+12G⋅cosθ, (1) {M=P⋅L2−G⋅(L1−L2−L3)−N′⋅hN=N′。 (2) 式中G为管片重力;M,N,Q分别为接头处弯矩、轴力和剪力;N′和P分别为由水平液压千斤顶和竖向液压千斤顶施加的水平向荷载和垂向载荷,通过POP-M工控PC电液伺服多通道控制器实现试验进程的自动控制。
3. 试验加载方案
针对拱顶接头和拱腰接头共开展了6组试验,工况Ⅰ~Ⅲ和工况IV~VI分别研究拱顶接头和拱腰接头超载变形后通过卸载和注浆的变形恢复过程,具体试验过程见表 1。试验在同济大学岩土及地下工程教育部重点实验室进行,采用TJ-GPJ2000盾构管片接头试验加载系统。试验过程中接缝张开量由线性位移传感器(LVDT)测得,如图 2中(c)所示。
表 1 试验工况Table 1. Test design工况编号 接头类型 试验内容 加载过程 试验控制变量 变量值 正常荷载
水平工况Ⅰ 拱顶接头 变形恢复过程 加载至正常荷载水平→施加超载→卸载至正常荷载水平→注浆过程模拟 超载程度/接头内力;
弯矩M,
轴力S,
剪力QM=178 kN/m,
N=593 kN,
Q=88 kN拱顶接头:
M=118 kN/m,
N=590 kN,
Q=87 kN
拱腰接头:
M=98 kN/m,
N=816 kN工况Ⅱ M=278 kN/m,
N=927 kN,
Q=134 kN工况Ⅲ M=378 kN/m,
N=1260 kN,
Q=181 kN工况Ⅳ 拱腰接对 M=155 kN/m,
N=968 kN工况Ⅴ M=171 kN/m,
N=1068 kN,工况Ⅵ M=188 kN/m,
N=1175 kN4. 试验结果与分析
4.1 拱顶接头
图 6对比显示了受正弯矩作用的隧道拱顶接头在工况Ⅰ~Ⅲ中接缝张开增量的变化。在超载过程中,接头张开量随着荷载的增加而增大。当3工况试件达到最大荷载时,接头变形也达到峰值。在卸载过程中,试验结果表明卸载能在一定程度上恢复接头变形,但不能完全恢复。接头变形卸载恢复百分比,即卸载减少的接缝张开增量与卸载前接缝张开增量的比值,分别为68%,56%,43%。这表明超载越小即变形程度越小,接头变形的可恢复性越好。
针对土体注浆对拱顶接头变形恢复的试验模拟,试验结果表明,其荷载–变形曲线的斜率比卸载过程小得多。减小相同的弯矩,土体注浆可使接头变形得到更有效的恢复,这是因为土体注浆引起的拱顶弯矩减小和轴力增大导致偏心距减小。为了在卸载后将接头变形完全恢复到正常载荷状态下的水平,工况Ⅰ~Ⅲ需要通过模拟土体注浆分别减小弯矩值为20,25,40 kN·m,如图 6所示。
4.2 拱腰接头
图 7对比显示了受负弯矩作用的隧道拱腰接头在工况Ⅳ~Ⅵ中接缝张开增量的变化。在超载阶段,相同载荷水平下,3工况的接缝张开增量几乎相同。荷载–变形曲线斜率的减小表明拱腰接头试件的抗弯刚度随着超载水平的增加而降低。在此基础上,研究了卸载和注浆作用下的变形恢复效果。接头变形卸载恢复百分比分别为65%,42%,36%。显然,与拱顶接头呈现的特性一样,变形程度越小卸载恢复效果百分比越大。
在试验模拟土体注浆阶段,荷载–变形曲线的斜率明显小于卸载阶段。在隧道两侧注浆产生的侧向挤压力的作用下,接头偏心距减小。因此,通过减少相同的弯矩,土体注浆比卸载获得更有效的恢复。此外,为了将变形恢复到正常荷载状态的水平,即将接缝张开增量减小到零,试验结果显示工况Ⅳ~Ⅵ分别需要减少弯矩为16,42,48 kN·m。
从两类接头的试验结果可知:超载作用下接头张开变形呈现出非线性发展规律,总体上,两类接头的抗弯刚度随着接头已有张开变形的增大而降低;超载引起的变形可以通过卸载得到部分恢复,既有变形越小,恢复效果越好,但不能完全恢复到超载之前状态;注浆作用下,拱顶接头的变形恢复效果较拱腰接头更为显著,这是由于注浆产生的横向挤压作用在减小拱顶接头弯矩的同时亦增大了其轴力,即有效降低了拱顶接头处的偏心距。
5. 结论
本文介绍了上海地铁隧道管片衬砌纵缝接头的一系列室内足尺试验结果,初步探究了卸载和土体注浆对超载引起接头变形的可恢复性,得出以下结论:
(1) 在地面超载作用下,衬砌环发生较大的横向变形,拱顶接头向隧道管片内侧张开,拱腰接头向隧道管片外侧张开,导致渗漏水等隧道病害发生的概率增大。
(2) 超载引起的变形能够通过卸载恢复部分变形,既有变形越小,恢复效率越高。当减少相同的弯矩时,土体注浆比卸载能实现更有效的恢复。
(3) 由于隧道衬砌环中的所有纵缝接头钢螺栓均靠近管片内侧,拱腰接头抗弯能力较拱顶接头差,转动刚度较小,变形较大,变形恢复效果较差。此外,注浆作用下,拱顶接头的变形恢复效果较拱腰接头更为显著,其原因是注浆有效降低了拱顶接头处的偏心距。因此,建议加强拱腰接头处结构设计,增强其抗弯强度,从而提升隧道衬砌的整体安全性能。
-
表 1 侧限压缩试验中结构性黏土的参数
Table 1 Parameters of structured clay in confined compression tests
M λ κ eIC ν b Δei ω γ β 1.5 0.505 0.02 5.383 0.3 0.7 1.1 1 0.5 25.25 表 2 三轴固结不排水试验中结构性黏土的参数
Table 2 Parameters of structured clay in consolidated undrained triaxial tests
土样 M λ κ eIC ν b Δei ω γ β 轻超固结人工制备结构性黏土 1.21 0.42 0.03 3.85 0.25 1 0.15 1 0.55 3 重超固结天然沉积结构性黏土 1.28 0.15 0.0377 2.91 0.25 1 0.22 1 0.08 5 表 3 三轴固结排水试验中结构性黏土的参数
Table 3 Parameters of structured clay in consolidated drained triaxial tests
土样 M λ κ eIC ν b Δei ω γ β 轻超固结CorinthMarl结构性黏土 1.38 0.2 0.08 3.7 0.33 1 0.12 1 0.8 5 重超固结La Biche结构性黏土 1.4 0.05 0.011 0.668 0.35 0.01 0.045 1 16 10 表 4 MSCC模型参数
Table 4 Parameters of MSCC model
M λ κ eIC ν β p'yi /kPa Δei b γ ω 1.28 0.355 0.0477 2.91 0.25 7.44 57.5 0.22 1 0.5 1 -
[1] 沈珠江. 土体结构性的数学模型: 21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95-97. http://cge.nhri.cn/article/id/8998 SHEN Zhujiang. Mathematic model of structure—The key Problem for soil mechanics in 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97. (in Chinese) http://cge.nhri.cn/article/id/8998
[2] 沈珠江. 结构性黏土的堆砌体模型[J]. 岩土力学, 2000, 21(1): 1-4. SHEN Zhujiang. A masonry model for structured clays[J]. Rock and Soil Mechanics, 2000, 21(1): 1-4. (in Chinese)
[3] 刘恩龙, 罗开泰, 张树祎. 初始应力各向异性结构性土的二元介质模型[J]. 岩土力学, 2013, 34(11): 3103-3109. LIU Enlong, LUO Kaitai, ZHANG Shuyi. Binary medium model for structured soils with initial stress-induced anisotropy[J]. Rock and Soil Mechanics, 2013, 34(11): 3103-3109. (in Chinese)
[4] OURIA A. Disturbed state concept–based constitutive model for structured soils[J]. International Journal of Geomechanics, 2017, 17(7): 04017008. doi: 10.1061/(ASCE)GM.1943-5622.0000883
[5] ASAOKA A, NAKANO M, NODA T. Superloading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000, 40(2): 99-110. doi: 10.3208/sandf.40.2_99
[6] 王立忠, 沈恺伦. K0固结结构性软黏土的本构模型[J]. 岩土工程学报, 2007, 29(4): 496-504. http://cge.nhri.cn/article/id/12452 WANG Lizhong, SHEN Kailun. A constitutive model of K0 consolided structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504. (in Chinese) http://cge.nhri.cn/article/id/12452
[7] LU Y, JIANG Y, ZHU W X, et al. Unified description of different soils based on the superloading and subloading concepts[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(1): 239-254. doi: 10.1016/j.jrmge.2022.02.015
[8] ROUAINIA M, MUIR WOOD D. A kinematic hardening constitutive model for natural clays with loss of structure[J]. Géotechnique, 2000, 50(2): 153-164. doi: 10.1680/geot.2000.50.2.153
[9] KAVVADAS M, AMOROSI A. A constitutive model for structured soils[J]. Géotechnique, 2000, 50(3): 263-273. doi: 10.1680/geot.2000.50.3.263
[10] PARK D S, KUTTER B L. Sensitive bounding surface constitutive model for structured clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(14): 1968-1987. doi: 10.1002/nag.2507
[11] YIN Z Y, HATTAB M, HICHER P Y. Multiscale modeling of a sensitive marine clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(15): 1682-1702. doi: 10.1002/nag.977
[12] 祝恩阳, 姚仰平. 结构性土UH模型[J]. 岩土力学, 2015, 36(11): 3101-3110, 3228. ZHU Enyang, YAO Yangping. A UH constitutive model for structured soils[J]. Rock and Soil Mechanics, 2015, 36(11): 3101-3110, 3228. (in Chinese)
[13] TAIEBAT M, DAFALIAS Y F, PEEK R. A destructuration theory and its application to SANICLAY model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(10): 1009-1040. doi: 10.1002/nag.841
[14] LIU M D, CARTER J P. A structured Cam Clay model[J]. Canadian Geotechnical Journal, 2002, 39: 1313-1332. doi: 10.1139/t02-069
[15] CARTER J P, LIU M D. Review of the structured cam clay model[C]//Soil Constitutive Models. Austin, Texas, USA. Reston, VA: American Society of Civil Engineers, 2005: 128: 99-132.
[16] SUEBSUK J, HORPIBULSUK S, LIU M D. Modified Structured Cam Clay: a generalised critical state model for destructured, naturally structured and artificially structured clays[J]. Computers and Geotechnics, 2010, 37(7/8): 956-968.
[17] SUEBSUK J, HORPIBULSUK S, LIU M D. Compression and shear responses of structured clays during subyielding[J]. Geomechanics and Engineering, 2019, 18(2): 121-131. http://www.researchgate.net/publication/333852828_Compression_and_shear_responses_of_structured_clays_during_subyielding
[18] BURGHIGNOLI A, MILIZAANO S, SOCCODATO F M. The effect of bond degradation in cemented clayey soils[C]// Proceedings of the Symposium on Geotechnical Engineering of Hard Soils-Soft Rocks. Balkema, 1998: 465-472.
[19] NGUYEN L, FATAHI B, KHABBAZ H. Development of a constitutive model to predict the behavior of cement-treated clay during cementation degradation: C3 model[J]. International Journal of Geomechanics, 2017, 17(7): 04017010. doi: 10.1061/(ASCE)GM.1943-5622.0000863
[20] ADACHI T, OKA F, HIRATA T, et al. Stress-strain behavior and yielding characteristics of eastern Osaka clay[J]. Soils and Foundations, 1995, 35(3): 1-13. doi: 10.3208/sandf.35.1
[21] ANAGNOSTOPOULOS A G, KALTEZIOTIS N, TSIAMBAOS G K, et al. Geotechnical properties of the Corinth canal marls[J]. Geotechnical & Geological Engineering, 1991, 9(1): 1-26.
[22] WONG R. Swelling and softening behaviour of La Biche shale[J]. Canadian Geotechnical Journal, 1998, 35(2): 206-221. doi: 10.1139/t97-087
-
其他相关附件