• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土岩复合地层盾构地中对接法刀盘拆卸不完全拱压力计算

陈星欣, 何明高, 施文城, 郭力群

陈星欣, 何明高, 施文城, 郭力群. 土岩复合地层盾构地中对接法刀盘拆卸不完全拱压力计算[J]. 岩土工程学报, 2024, 46(12): 2652-2660. DOI: 10.11779/CJGE20231228
引用本文: 陈星欣, 何明高, 施文城, 郭力群. 土岩复合地层盾构地中对接法刀盘拆卸不完全拱压力计算[J]. 岩土工程学报, 2024, 46(12): 2652-2660. DOI: 10.11779/CJGE20231228
CHEN Xingxin, HE Minggao, SHI Wencheng, GUO Liqun. Calculation of pressures on after incomplete arch cutterhead removal in earth-rock composite formation by in-situ junction method for shield tunneling[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2652-2660. DOI: 10.11779/CJGE20231228
Citation: CHEN Xingxin, HE Minggao, SHI Wencheng, GUO Liqun. Calculation of pressures on after incomplete arch cutterhead removal in earth-rock composite formation by in-situ junction method for shield tunneling[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2652-2660. DOI: 10.11779/CJGE20231228

土岩复合地层盾构地中对接法刀盘拆卸不完全拱压力计算  English Version

详细信息
    作者简介:

    陈星欣(1984—),男,博士,教授,主要从事城市地下空间工程研究工作。E-mail: chenxx@hqu.edu.cn

  • 中图分类号: TU43

Calculation of pressures on after incomplete arch cutterhead removal in earth-rock composite formation by in-situ junction method for shield tunneling

  • 摘要: 采用“相向掘进、地中对接、弃壳解体”的盾构地中对接法时,确保刀盘拆机后临空面稳定性是安全对接的关键。依托青岛盾构对接工程,通过COMSOL Multiphysics建立数值模型,基于主应力矢量流线偏转和各向应力变化确定盾构地中对接段压力拱主拱圈范围,并通过考虑大主应力不完全偏转和内摩擦角不完全调用推导上覆围岩压力计算公式。结果表明:盾构对接段沿隧道轴向的大主应力未见矢量流线成拱,沿隧道径向的成拱效应更为显著。由于拱顶存在松动区域,内边界并未与隧道上边沿重合,而是向上发展至拱顶一定高度,压力拱两侧边界倾斜向上,主拱圈整体呈现为盆状。对比不完全拱的大主应力实际偏转情况发现圆弧、线性、抛物线形拱迹线均高估了大主应力偏转角度,导致侧压力系数偏大,计算上覆围岩压力时偏于不安全,调用内摩擦角则随着距拱顶距离的减小而增大,通过数值模型计算和理论分析得出在压力拱作用下临空面荷载下降为初始围压的1/3。
    Abstract: It is the key to ensure the stability of the free face after the cutterhead is disassembled by using the shield junction method of "junction, shell abandoning and disintegration in opposite tunneling". For a shield tunneling project in Qingdao, a numerical model is established by COMSOL Multiphysics. Based on the streamline deflection of the principal stress vector and change of stresses in various directions, the range of the main arch ring of the pressure arch in the junction section of the tunneling is determined, and the formula for calculating the overlying pressures on the surrounding rock is derived by considering the incomplete deflection of the major principal stress and the incomplete call of the internal friction angle. The results show that the major principal stress along the tunnel axis does not arch along the vector streamline, but the arching effects along the tunnel axis are more significant. Due to the loose area at the vault, the inner boundary does not coincide with the upper edge of the tunnel, but is a certain height away from the vault. The boundaries at both sides of the pressure arch are inclined upward, and the main arch ring is generally in the shape of a basin. By comparing the actual deflection of the major principal stress of incomplete arch, it is found that the arc, linear and parabolic arch traces all overestimate the deflection angle of the principal stress, resulting in a large lateral pressure coefficient, and it is unsafe to calculate the overlying earth pressures, while the internal friction angle increases with the decrease of the distance from the arch vault. Through the numerical calculation and theoretical analysis, it is concluded that under the action of pressure arch, the loads on the free surface drop to 1/3 of the initial confining pressures.
  • 图  1   三维计算模型

    Figure  1.   Three-dimensional model

    图  2   大主应力矢量流线偏转图

    Figure  2.   Streamline deflection of principal stress vector

    图  3   压力拱主拱圈外边界确定图

    Figure  3.   Determination of outer boundary main arch ring of pressure arch

    图  4   压力拱主拱圈内边界确定图

    Figure  4.   Determination of inner boundary of main arch ring of pressure arch

    图  5   隧道上部成拱区域围岩应力分布

    Figure  5.   Stress distribution of surrounding rock in upper arch area of tunnel

    图  6   压力拱主拱圈简化模型

    Figure  6.   Simplified model for main arch ring of pressure arch

    图  7   压力拱成拱机理

    Figure  7.   Forming mechanism of pressure arch

    图  8   最大主应力拱迹线

    Figure  8.   Arch traces of major principal stress

    图  9   拱顶平均侧压力系数

    Figure  9.   Mean lateral pressure coefficients of arch vanlt

    图  10   不完全拱计算应力莫尔圆

    Figure  10.   Mohr circle of stress for calculation of incomplete arch

    图  11   调用内摩擦角

    Figure  11.   Call of internal friction angle

    图  12   微分土条受力分析

    Figure  12.   Force analysis of differential soil strips

    图  13   压力拱间平均垂直应力

    Figure  13.   Mean vertical stresses between arches

    表  1   材料物理力学参数

    Table  1   Physical and mechanical parameters of materials

    地层 H/m g/(kg·m-3) E/MPa μ c/kPa φ/(°)
    回填土 2.2 1750 20 0.35 15 10
    含有机质粉质黏土 4.5 1800 15 0.36 9 7
    粉质黏土 4.1 2000 28 0.34 17 13
    强风化安山岩 2.1 2200 1600 0.33 45 21
    微风化安山岩 32.3 2500 10500 0.30 300 36
    管片 2500 27600 0.20
    盾壳 7800 206000 0.25
    注浆层 2000 100 0.25
    注:H为层厚,g为密度,E为弹性模量,μ为泊松比,c为黏聚力,φ为内摩擦角。
    下载: 导出CSV

    表  2   拱顶平均垂直应力计算参数

    Table  2   Parameters of mean vertical stress of arch vault

    距拱顶距离/m 土条宽度/m 平均侧压力系数 调用内摩擦角/(°)
    5.5 6.0 0.956 0
    4.5 5.8 0.895 7.48
    3.5 5.6 0.858 11.13
    2.5 5.4 0.847 13.59
    1.5 5.2 0.861 15.54
    0.5 5.0 0.950 17.07
    下载: 导出CSV
  • [1] 石荣剑, 岳丰田, 张勇, 等. 盾构地中对接冻结加固模型试验(Ⅰ): 冻结过程中地层冻结温度场的分布特征[J]. 岩土力学, 2017, 38(2): 368-376.

    SHI Rongjian, YUE Fengtian, ZHANG Yong, et al. Model test on freezing reinforcement for shield junction Part 1: distribution characteristics of temperature field in soil stratum during freezing process[J]. Rock and Soil Mechanics, 2017, 38(2): 368-376. (in Chinese)

    [2] 朱伟, 钱勇进, 王璐, 等. 长距离盾构隧道掘进的主要问题及发展趋势[J]. 河海大学学报(自然科学版), 2023, 51(1): 138-149.

    ZHU Wei, QIAN Yongjin, WANG Lu, et al. Main problems and development trends of long-distance shield tunneling[J]. Journal of Hohai University (Natural Sciences), 2023, 51(1): 138-149. (in Chinese)

    [3] 洪开荣, 杜闯东, 王坤. 广深港高速铁路狮子洋水下盾构隧道修建技术[J]. 中国工程科学, 2009, 11(7): 53-58.

    HONG Kairong, DU Chuangdong, WANG Kun. Shield tunneling technology of Shiziyang subaqueous tunnel of Guangzhou-Shenzhen-Hongkong high-speed railway[J]. Engineering Sciences, 2009, 11(7): 53-58. (in Chinese)

    [4] 傅鹤林, 张加兵, 陈伟, 等. 深埋圆形毛洞隧道围岩压力拱范围研究[J]. 湖南大学学报(自然科学版), 2018, 45(7): 117-124.

    FU Helin, ZHANG Jiabing, CHEN Wei, et al. Research on pressure arch range of surrounding rock in deep unlined circular tunnel[J]. Journal of Hunan University (Natural Sciences), 2018, 45(7): 117-124. (in Chinese)

    [5] 王家全, 陈家明, 林志南, 等. 基于三角形滑移面的地基松动土压力研究[J]. 岩土力学, 2023, 44(3): 697-707.

    WANG Jiaquan, CHEN Jiaming, LIN Zhinan, et al. Study on loose soil pressure based on triangular slip surfaces[J]. Rock and Soil Mechanics, 2023, 44(3): 697-707. (in Chinese)

    [6] 李奎. 水平层状隧道围岩压力拱理论研究[D]. 成都: 西南交通大学, 2010.

    LI Kui. Pressure Arch Theory Study of Horizontal Bedded Tunnel Surrounding Rock[D]. Chengdu: Southwest Jiaotong University, 2010. (in Chinese)

    [7]

    KONG X X, LIU Q S, PAN Y C, et al. Stress redistribution and formation of the pressure arch above underground excavation in rock mass[J]. European Journal of Environmental and Civil Engineering, 2021, 25(4): 722-736. doi: 10.1080/19648189.2018.1541824

    [8]

    CHEN R P, LI J, KONG L G, et al. Experimental study on face instability of shield tunnel in sand[J]. Tunnelling and Underground Space Technology, 2013, 33: 12-21. doi: 10.1016/j.tust.2012.08.001

    [9] 耿哲, 袁大军, 金大龙, 等. 考虑松动区渐进破坏的隧道松动土压力研究[J]. 岩土工程学报, 2023, 45(8): 1754-1762. doi: 10.11779/CJGE20220684

    GENG Zhe, YUAN Dajun, JIN Dalong, et al. Loose earth pressure of tunnels considering progressive failure of loosen zone[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1754-1762. (in Chinese) doi: 10.11779/CJGE20220684

    [10] 张宇, 陶连金, 刘军, 等. 考虑主应力偏转和土拱效应的干砂盾构隧道掌子面极限支护力计算方法研究[J]. 岩土工程学报, 2023, 45(3): 530-540. doi: 10.11779/CJGE20211349

    ZHANG Yu, TAO Lianjin, LIU Jun, et al. Method for calculating limit support pressure of face of shield tunnels considering principal stress axis rotation and soil arching effects in dry sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 530-540. (in Chinese) doi: 10.11779/CJGE20211349

    [11] 叶飞, 樊康佳, 宋京, 等. 基于不完全拱效应的隧道预处理机制与计算方法[J]. 岩石力学与工程学报, 2017, 36(6): 1469-1478.

    YE Fei, FAN Kangjia, SONG Jing, et al. The pretreatment mechanism of tunnels and its calculation method based on the incomplete arch effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1469-1478. (in Chinese)

    [12]

    CHEN R P, TANG L J, YIN X S, et al. An improved 3D wedge-prism model for the face stability analysis of the shield tunnel in cohesionless soils[J]. Acta Geotechnica, 2015, 10(5): 683-692. doi: 10.1007/s11440-014-0304-5

    [13] 徐长节, 梁禄钜, 陈其志, 等. 考虑松动区内应力分布形式的松动土压力研究[J]. 岩土力学, 2018, 39(6): 1927-1934.

    XU Changjie, LIANG Luju, CHEN Qizhi, et al. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone[J]. Rock and Soil Mechanics, 2018, 39(6): 1927-1934. (in Chinese)

    [14] 崔蓬勃, 朱永全, 刘勇, 等. 考虑土拱发挥过程的非饱和砂土盾构隧道极限支护力计算方法研究[J]. 岩土工程学报, 2020, 42(5): 873-881. doi: 10.11779/CJGE202005009

    CUI Pengbo, ZHU Yongquan, LIU Yong, et al. Calculation of ultimate supporting forces of shield tunnels in unsaturated sandy soils considering soil arching effects[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 873-881. (in Chinese) doi: 10.11779/CJGE202005009

    [15] 黄大维, 陈后宏, 徐长节, 等. 联络通道施工盾构机接收对已建盾构隧道影响试验研究[J]. 岩土工程学报, 2024, 46(4): 784-793. doi: 10.11779/CJGE20221455

    HUANG Dawei, CHEN Houhong, XU Changjie, et al. Experimental study on influences of shield machine reception on existing shield tunnels during construction of connecting channels[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 784-793. (in Chinese) doi: 10.11779/CJGE20221455

    [16]

    SHI J K, WANG F, ZHANG D M, et al. Refined 3D modelling of spatial-temporal distribution of excess pore water pressure induced by large diameter slurry shield tunneling[J]. Computers and Geotechnics, 2021, 137: 104312. doi: 10.1016/j.compgeo.2021.104312

    [17]

    ZHANG H F, ZHANG P, ZHOU W, et al. A new model to predict soil pressure acting on deep burial jacked pipes[J]. Tunnelling and Underground Space Technology, 2016, 60: 183-196. doi: 10.1016/j.tust.2016.09.005

    [18] 吕伟华, 缪林昌, 王非. 基于不完全土拱效应的土工格栅加固机制与设计方法[J]. 岩石力学与工程学报, 2012, 31(3): 632-639.

    LU Weihua, MIAO Linchang, WANG Fei. Mechanism of geogrid reinforcement based on partially developed soil arch effect and design method[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 632-639. (in Chinese)

  • 期刊类型引用(3)

    1. 李飞龙,姜昌山,蔡国庆,余虔,韩进宝,张合青. 飞机滑行荷载对水泥混凝土道面及下穿通道的动力响应影响. 土木工程学报. 2024(S2): 80-87 . 百度学术
    2. 黄之懿,游庆龙,马靖莲,田帅团,赵志,黄文旭. 飞机轮载作用下沥青道面荷载影响范围分析. 中国科技论文. 2023(08): 890-896+904 . 百度学术
    3. 邓友生,姚志刚,邓明科,李明,李龙,肇慧玲. 温度-荷载作用下新旧混凝土道面接缝力学性能. 西安建筑科技大学学报(自然科学版). 2022(06): 899-905 . 百度学术

    其他类型引用(8)

图(13)  /  表(2)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  56
  • PDF下载量:  81
  • 被引次数: 11
出版历程
  • 收稿日期:  2023-12-14
  • 网络出版日期:  2024-06-18
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回