Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

软黏土取样扰动机理、评估方法及控制措施研究进展

才昊, 叶冠林, 兰立信, 张琪, 朱文轩

才昊, 叶冠林, 兰立信, 张琪, 朱文轩. 软黏土取样扰动机理、评估方法及控制措施研究进展[J]. 岩土工程学报, 2025, 47(2): 225-233. DOI: 10.11779/CJGE20231161
引用本文: 才昊, 叶冠林, 兰立信, 张琪, 朱文轩. 软黏土取样扰动机理、评估方法及控制措施研究进展[J]. 岩土工程学报, 2025, 47(2): 225-233. DOI: 10.11779/CJGE20231161
CAI Hao, YE Guanlin, LAN Lixin, ZHANG Qi, ZHU Wenxuan. Research progress on disturbance mechanisms, evaluation methods and control measures for sampling of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 225-233. DOI: 10.11779/CJGE20231161
Citation: CAI Hao, YE Guanlin, LAN Lixin, ZHANG Qi, ZHU Wenxuan. Research progress on disturbance mechanisms, evaluation methods and control measures for sampling of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 225-233. DOI: 10.11779/CJGE20231161

软黏土取样扰动机理、评估方法及控制措施研究进展  English Version

基金项目: 

国家自然科学基金项目 42072317

上海市社会发展科技攻关项目 21DZ1204300

详细信息
    作者简介:

    才昊(1996—),男,博士,主要从事取土扰动影响与土体性质关系方面的研究工作。E-mail:609559109@qq.com

    通讯作者:

    叶冠林, E-mail: ygl@sjtu.edu.cn

  • 中图分类号: TU43

Research progress on disturbance mechanisms, evaluation methods and control measures for sampling of soft clay

  • 摘要: 软黏土由于具有含水率高、压缩性强、灵敏度高等特点使其在取样过程中易受到扰动,导致土体的强度及变形特性显著改变。了解取样扰动的力学机理、减少取样扰动影响并对土样质量进行合理评估对于确定工程设计中有代表性的土体参数具有重要意义。为此,总结了国内外软黏土取样扰动相关的研究进展,具体包括软黏土取样扰动因素及力学机理、取样扰动影响的宏微观表现、扰动程度的评估方法以及减少扰动的措施。研究表明:目前针对取样扰动宏观力学机理的研究成果颇丰,但缺乏相应的微观试验证据及微观机理分析对宏观结果进行佐证;现存土样质量评估指标大都只针对纯黏土,对粉质黏土、粉土等低塑性中间土体的适用性存疑,目前仍没有针对不同性质土体的统一土样质量评价体系;室内再固结方法可以有效减少取土过程中的应力释放影响,但无法恢复附加扰动破坏的土体结构。基于此,对今后亟待开展的研究提出了4点建议与展望。
    Abstract: The soft clay, characterized by high moisture content, strong compressibility and high sensitivity, is prone to disturbance during the sampling process, resulting in significant changes in the strength and deformation characteristics of soils. Understanding the mechanical mechanism behind sampling disturbance, reducing its impact and accurately evaluating the sample quality are crucial for determining the representative soil parameters in engineering design. To address these issues, the current researches on sampling disturbance in soft clay are summarized, including the mechanical mechanisms of sampling disturbance, the macroscopic and microscopic effects, the methods for the sample quality evaluation and the strategies to reduce disturbance. The researches show that there are abundant results on the macroscopic mechanical mechanisms of sampling disturbance. However, there is a lack of corresponding microscopic experimental evidence and analysis to support these macroscopic results. Furthermore, the most existing quality evaluation indices are designed for the clay and may not applicable to the low-plasticity intermediate soils such as silty clay and silt. Currently, there is still no unified quality evaluation system for the soil samples with varying properties. The reconsolidation methods can effectively reduce the stress release during the soil sampling process, but they cannot restore the soil structure damaged by sampling disturbance. Based on this, four suggestions and prospects for future researches are proposed.
  • 图  1   ISA扰动原理图[5]

    Figure  1.   Schematic diagram of ISA

    图  2   PSA与ISA应力路径示意图

    Figure  2.   Schematic diagram of stress paths for PSA and ISA

    图  3   不同取样方式下软黏土典型三轴不排水剪切试验结果[7]

    Figure  3.   Typical triaxial undrained shear test results of soft clay by different sampling methods

    图  4   扰动作用下软黏土典型固结试验结果[10]

    Figure  4.   Oedometer test results of soft clay under disturbance

    图  5   不同扰动形式对软黏土压缩行为影响示意图[11]

    Figure  5.   Schematic of effects of disturbance on compression behaviour

    图  6   50 mm Shelby取样管土样试验结果[18]

    Figure  6.   Test results of 50 mm-Shelby sample

    图  7   不同塑性土体受扰动后有效应力降低程度图[36]

    Figure  7.   Diagram of degree of effective stress reduction in soils with different plasticities under disturbance

    图  8   基于孔隙指数的土样质量评价指标[24]

    Figure  8.   Indices of sample quality evaluation based on void index

    图  9   修正体积压缩法扰动度定义[25]

    Figure  9.   Definition of modified volume compression method

    图  10   M0/ML指标定义[9]

    Figure  10.   Definition of M0/ML

    图  11   通过SCPTU和弯曲元在不同样品上测量的土体剪切波速剖面图[15]

    Figure  11.   Measured shear wave velocity profiles of different samples using SCPTU and bending elements

    图  12   取土扰动影响示意图[37]

    Figure  12.   Schematic diagram of sampling disturbance effects on compression curve of soils

    表  1   54 mm取土管样品与高质量块状样品的强度对比[9]

    Table  1   Strengths of 54 mm-piston sample as compared to block samples of high quality

    试验类型 高于54 mm取土管样品强度/%
    CAUC 10~50
    CAUE 0~10
    DSS 5~20
    下载: 导出CSV

    表  2   5种合成土体的物理指标[21]

    Table  2   Physical parameters of five synthetic soils

    土体 wL/
    %
    wP/
    %
    Ip/
    %
    细粒含量/
    %
    土体分类
    0S100K 59 25 34 100 CH
    50S50K 31 15 16 88 CL
    70S30K 24 15 9 83 CL
    85S15K 19 15 4 79 CL-ML
    98S02K 18 NP NP 75 ML
    注:wL为液限,wP为塑限,Ip为塑性指数,细粒: < 0.075 mm。
    下载: 导出CSV

    表  3   Δe/e0土样质量评价指标[7]

    Table  3   Sample quality evaluation based on Δe/e0

    OCR=1~2 OCR=2~4 评级
    <0.04 <0.03 very good to excellent
    0.04~0.07 0.03~0.05 good to fair
    0.07~0.14 0.05~0.10 poor
    >0.14 >0.10 very poor
    下载: 导出CSV
  • [1] 李广信, 张丙印, 于玉贞. 土力学[M]. 北京: 清华大学出版社, 2013.

    LI Guangxin, ZHANG Bingyin, YU Yuzhen. Soil mechanics[M]. Beijing: Tsinghua University Press, 2013. (in Chinese)

    [2]

    HVORSLEV M J. Subsurface exploration and sampling of soil for civil engineering purposes[C]// Waterways Experiment Station. Vicksburg, 1949.

    [3]

    SKEMPTON A W, SOWA V A. The behaviour of saturated clays during sampling and testing[J]. Géotechnique, 1963, 13(4): 269-290. doi: 10.1680/geot.1963.13.4.269

    [4]

    LADD C C, LAMBE T W. The strength of "undisturbed" clay determined from undrained tests[M]//Laboratory Shear Testing of Soils. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2009: 342-342-30.

    [5]

    BALIGH M M, AZZOUZ A S, CHIN C T. Disturbances due to "ideal" tube sampling[J]. Journal of Geotechnical Engineering, 1987, 113(7): 739-757. doi: 10.1061/(ASCE)0733-9410(1987)113:7(739)

    [6]

    BALIGH M M. Strain path method[J]. Journal of Geotechnical Engineering, 1985, 111(9): 1108-1136. doi: 10.1061/(ASCE)0733-9410(1985)111:9(1108)

    [7]

    LUNNE T, BERRE T, STRANDVIK S. Sample disturbance effects in soft low plastic Norwegian clay[C]// Recent developments in soil and pavement mechanics, Ria de Janeiro, Brazil, 1997: 81-102.

    [8]

    LUNNE T, BERRE T, ANDERSEN K H, et al. Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays[J]. Canadian Geotechnical Journal, 2006, 43(7): 726-750. doi: 10.1139/t06-040

    [9]

    KARLSRUD K, HERNANDEZ-MARTINEZ F G. Strength and deformation properties of Norwegian clays from laboratory tests on high-quality block samples[J]. Canadian Geotechnical Journal, 2013, 50(12): 1273-1293. doi: 10.1139/cgj-2013-0298

    [10]

    RUTLEDGE P C. Relation of undisturbed sampling to laboratory testing[J]. Transactions of the American Society of Civil Engineers, 1944, 109(1): 1155-1183. doi: 10.1061/TACEAT.0005758

    [11]

    SANTAGATA M C, GERMAINE J T. Sampling disturbance effects in normally consolidated clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(12): 997-1006. doi: 10.1061/(ASCE)1090-0241(2002)128:12(997)

    [12] 顾晓强, 杨峻, 黄茂松, 等. 砂土剪切模量测定的弯曲元、共振柱和循环扭剪试验[J]. 岩土工程学报, 2016, 38(4): 740-746. doi: 10.11779/CJGE201604020

    GU Xiaoqiang, YANG Jun, HUANG Maosong, et al. Combining bender element, resonant column and cyclic torsional shear tests to determine small strain shear modulus of sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 740-746. (in Chinese) doi: 10.11779/CJGE201604020

    [13] 王建华, 程国勇, 张立. 取样扰动引起土层剪切波速变化的试验研究[J]. 岩石力学与工程学报, 2004, 23(15): 2604-2608.

    WANG Jianhua, CHENG Guoyong, ZHANG Li. Study on variation of shear wave velocity caused by sampling disturbance[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2604-2608. (in Chinese)

    [14]

    DONOHUE S, LONG M. Assessment of sample quality in soft clay using shear wave velocity and suction measurements[J]. Géotechnique, 2010, 60(11): 883-889. doi: 10.1680/geot.8.T.007.3741

    [15]

    HORNG V, TANAKA H, OBARA T. Effects of sampling tube geometry on soft clayey sample quality evaluated by nondestructive methods[J]. Soils and Foundations, 2010, 50(1): 93-107. doi: 10.3208/sandf.50.93

    [16]

    DONOHUE S, LONG M. Suction measurements as indicators of sample quality in soft clay[J]. Geotechnical Testing Journal, 2009, 32(3): 286-296. doi: 10.1520/GTJ101416

    [17]

    DONOHUE S, LONG M. Suction measurements as indicators of sample quality in soft clay[J]. Geotechnical Testing Journal, 2009, 32(3): 286-296. doi: 10.1520/GTJ101416

    [18]

    PINEDA J A, LIU X F, SLOAN S W. Effects of tube sampling in soft clay: a microstructural insight[J]. Géotechnique, 2016, 66(12): 969-983. doi: 10.1680/jgeot.15.P.217

    [19]

    KONNI G R. Influence of soil properties and composition, and applied hydraulic pressures on sample quality of Pusan clays[J]. European Journal of Engineering and Technology Research, 2017, 2(1): 32-38.

    [20]

    SANTAGATA M, GERMAINE J T. Effect of OCR on sampling disturbance of cohesive soils and evaluation of laboratory reconsolidation procedures[J]. Canadian Geotechnical Journal, 2005, 42(2): 459-474. doi: 10.1139/t04-104

    [21]

    LUKAS W G, DEGROOT D J, DEJONG J T, et al. Undrained shear behavior of low-plasticity intermediate soils subjected to simulated tube-sampling disturbance[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(1): 04018098. doi: 10.1061/(ASCE)GT.1943-5606.0001967

    [22]

    ANDRESEN A. The NGI 54-mm samplers for undisturbed sampling of clays and representative sampling of coarser materials, state of the art on current practice of soil sampling[C]// Progressing of The International Symposium of Soil Sampling, Singapore, 1979.

    [23]

    HATHEWAY A. Soil Mechanics in Engineering Practice, 3rd Edition[M]. 2rd ed. New York: Wiley, 1996.

    [24]

    HONG Z S, HAN J. Evaluation of sample quality of sensitive clay using intrinsic compression concept[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(1): 83-90. doi: 10.1061/(ASCE)1090-0241(2007)133:1(83)

    [25]

    HONG Z S, ONITSUKA K. A method of correcting yield stress and compression index of ariake clays for sample disturbance[J]. Soils and Foundations, 1998, 38(2): 211-222. doi: 10.3208/sandf.38.2_211

    [26]

    BUTTERFIELD R. A natural compression law for soils (an advance on e-lgp')[J]. Géotechnique, 1979, 29(4): 469-480. doi: 10.1680/geot.1979.29.4.469

    [27]

    DEJONG J T, KRAGE C P, ALBIN B M, et al. Work-based framework for sample quality evaluation of low plasticity soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(10): 04018074. doi: 10.1061/(ASCE)GT.1943-5606.0001941

    [28]

    TSUCHIDA T. Evaluation of undrained shear strength of soft clay with consideration of sample quality[J]. Soils and Foundations, 2000, 40(3): 29-42. doi: 10.3208/sandf.40.3_29

    [29]

    CARROLL R, LONG M. Sample disturbance effects in silt[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(9): 04017061. doi: 10.1061/(ASCE)GT.1943-5606.0001749

    [30] 杨守华, 魏汝龙. 土样扰动对正常固结黏土强度及压缩特性的影响[J]. 水利水运科学研究, 1992(1): 73-83.

    YANG Shouhua, WEI Rulong. Influence of sampling disturbances on strength and consolidation behavior of normally consolidated clay[J]. Hydro-Science and Engineering, 1992(1): 73-83. (in Chinese)

    [31]

    LEFEBVRE G, POULIN C. A new method of sampling in sensitive clay[J]. Canadian Geotechnical Journal, 1979, 16(1): 226-233. doi: 10.1139/t79-019

    [32]

    ROCHELLE P L, SARRAILH J, TAVENAS F, et al. Causes of sampling disturbance and design of a new sampler for sensitive soils[J]. Canadian Geotechnical Journal, 1981, 18(1): 52-66. doi: 10.1139/t81-006

    [33]

    TANAKA H, SHARMA P, TSUCHIDA T, et al. Comparative study on sample quality using several types of samplers[J]. Soils and Foundations, 1996, 36(2): 57-68. doi: 10.3208/sandf.36.2_57

    [34] 高大钊, 张少钦, 姜安龙, 等. 取样扰动对土的工程性质指标影响的试验研究[J]. 工程勘察, 2006, 34(3): 6-10.

    GAO Dazhao, ZHANG Shaoqin, JIANG Anlong, et al. Experimental study on influence of sampling disturbance to indices for engineering properties of soils[J]. Journal of Geotechnical Investigation & Surveying, 2006, 34(3): 6-10. (in Chinese)

    [35] 李高山, 潘永坚, 周江锋. 取样方法对饱和软土物理力学指标影响机理研究[J]. 工程勘察, 2019, 47(3): 9-16.

    LI Gaoshan, PAN Yongjian, ZHOU Jiangfeng. Study on the influence mechanism of sampling on physical and mechanical indexes of saturated soft soil[J]. Geotechnical Investigation & Surveying, 2019, 47(3): 9-16. (in Chinese)

    [36]

    BJERRUM L. Problems of soil mechanics and construction on soft clays and structurally unstable soils (collapsible, expansive and others)[C]// The 8th International Conference on Computational Mechanics of Solids and Structures. Singapore, 1973.

    [37]

    LADD C C, FOOTT R. New design procedure for stability of soft clays[J]. Journal of the Geotechnical Engineering Division, 1974, 100(7): 763-786.

    [38]

    TANAKA H, SHIWAKOTI D R, TANAKA M. Applicability of shansep method to six different natural clays, using triaxial and direct shear tests[J]. Soils and Foundations, 2003, 43(3): 43-55.

图(12)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-26
  • 网络出版日期:  2024-07-23
  • 刊出日期:  2025-01-31

目录

    /

    返回文章
    返回