考虑地震强度不确定性的车站韧性评估方法

    张陈龙, 张东明, 黄忠凯, 黄宏伟

    张陈龙, 张东明, 黄忠凯, 黄宏伟. 考虑地震强度不确定性的车站韧性评估方法[J]. 岩土工程学报, 2025, 47(1): 164-172. DOI: 10.11779/CJGE20231153
    引用本文: 张陈龙, 张东明, 黄忠凯, 黄宏伟. 考虑地震强度不确定性的车站韧性评估方法[J]. 岩土工程学报, 2025, 47(1): 164-172. DOI: 10.11779/CJGE20231153
    ZHANG Chenlong, ZHANG Dongming, HUANG Zhongkai, HUANG Hongwei. Resilience assessment method for subway stations considering uncertainty of seismic intensity[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 164-172. DOI: 10.11779/CJGE20231153
    Citation: ZHANG Chenlong, ZHANG Dongming, HUANG Zhongkai, HUANG Hongwei. Resilience assessment method for subway stations considering uncertainty of seismic intensity[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 164-172. DOI: 10.11779/CJGE20231153

    考虑地震强度不确定性的车站韧性评估方法  English Version

    基金项目: 

    国家重点研发计划项目 2021YFF0502200

    国家自然科学基金项目 52108381

    上海市科委项目 22dz1201202

    城市轨道交通地下结构损伤数据库及弹性评估算法研究项目 TSY2022QT161

    详细信息
      作者简介:

      张陈龙(1997—),博士研究生,主要从事地下结构韧性评估与防灾减灾等方面科研工作。E-mail: zhang_cl@tongji.edu.cn

      通讯作者:

      张东明, E-mail: 09zhang@tongji.edu.cn

    • 中图分类号: TU432

    Resilience assessment method for subway stations considering uncertainty of seismic intensity

    • 摘要: 地铁车站作为地下交通的枢纽,是社会经济交流和人员交往的重要组成部分,但其同时也面临着诸多灾害风险。以前包括地震在内的灾害,会对地下交通网络造成严重后果,也对城市功能造成重大损失。因此,地铁车站等关键交通枢纽的韧性评估对于提高城市安全性和维护其功能至关重要。提供了一个考虑地震强度不确定性的综合韧性评估框架,用于评估浅埋地铁车站在地震灾害下的鲁棒性和快速恢复能力。该框架方法利用有限元软件,建立相关地铁车站数值模型;然后,通过所选择的地震动展开大量数值分析,以便生成关于峰值地面加速度(PGA)的地铁车站易损性函数;接着利用蒙特卡洛模拟进一步量化地震动强度不确定性,并最终确定车站在各个损伤阶段的概率。最终,通过联立地铁车站损伤概率与经济损失关系,考虑地铁车站的恢复路径和可恢复性,完成韧性评估。本研究通过该韧性评估框架和所计算出的韧性指标R,评价和讨论了性能恢复模型和场地条件对车站抗震韧性的影响。这项工作可以帮助地铁网络基于韧性的设计和管理,以支持对地震灾害的适应,从而促进相关决策者关于资源的有效分配。
      Abstract: Subway stations serve as the vital hubs in underground transportation systems and play a critical role in facilitating social and economic exchanges as well as interpersonal interactions. However, these stations are also susceptible to various disaster risks. The historical incidents, including earthquakes, have had severe consequences on underground transit networks, leading to significant disruptions in urban functionality. Therefore, assessing the resilience of key transportation hubs such as subway stations is crucial for enhancing the urban safety and ensuring their continued functionality. The objective of this study is to provide a comprehensive resilience assessment framework for shallow-buried subway stations to evaluate their robustness and rapid recovery capability, considering the uncertainty of seismic intensity. The proposed framework involves the utilization of finite element software to build numerical models for the relevant subway stations. Subsequently, a large number of numerical analyses are conducted using the selected seismic motions to derive vulnerability functions for the subway stations based on the peak ground acceleration. Additionally, the Monte Carlo simulations are employed to further quantify the uncertainty of seismic motion intensity, ultimately determining the probabilities of damage of the subway station damage at various stages. By integrating the probabilities of damage with the relationship between damage and economic loss and considering the recovery paths and recoverability of the subway stations, a comprehensive resilience assessment is achieved. The impacts of performance recovery models, site conditions and disaster preparedness time on the seismic resilience of the subway stations are evaluated and discussed using the derived resilience index R. This research contributes to the design and management of subway networks based on resilience, enabling them to adapt to seismic disasters and facilitating the effective allocation of resources by the relevant decision-makers.
    • 图  1   地铁车站韧性

      Figure  1.   Resilience of subway stations

      图  2   地铁车站地震韧性评估框架

      Figure  2.   Framework for seismic resilience assessment of subway stations

      图  3   车站结构尺寸及配筋

      Figure  3.   Structural dimensions and reinforcement of a station

      图  4   3场地的剪切波速vs、密度ρ、黏聚力c和摩擦角φ

      Figure  4.   Shear wave velocity vs, density ρ, cohesion c and friction angle φ for three types of sites

      图  5   数值模型尺寸和边界条件

      Figure  5.   Numerical model dimensions and boundary conditions

      图  6   不同地层类型下地震强度和结构需求关系

      Figure  6.   Relationship between seismic intensity and structural demand in different stratigraphic types

      图  7   不同地层类型下双跨车站易损性

      Figure  7.   Vulnerability of double-span stations in different stratigraphic types

      图  8   不同功能恢复函数韧性对比

      Figure  8.   Comparison of resilience of different performance recovery functions

      图  9   不同场地条件韧性对比

      Figure  9.   Comparison of resilience in different site types

      表  1   各损伤阶段的修复系数[9]

      Table  1   Repair coefficients for different stages of damage[9]

      损伤状态 维修成本比例
      S1 -无损伤 0
      S2 -轻微损伤 0.10
      S3 -中等损伤 0.25
      S4 -严重损伤 0.75
      S5 -垮塌 1
      下载: 导出CSV

      表  2   各损伤阶段的维修时间[17]

      Table  2   Repair time for different stages of damage[17]

      损伤状态 维修时间/d
      S1 -无损伤 0
      S2 -轻微损伤 0.5
      S3 -中等损伤 2.4
      S4 -严重损伤 45
      S5 -垮塌 210
      下载: 导出CSV

      表  3   地铁车站的损坏状况和层间位移角阈值[12]

      Table  3   Damage stages and thresholds of inter-storey drift ratio in subway stations[12]

      损伤状态 IDR: θ
      S1 -无损伤 θ<0.08%
      S2 -轻微损伤 0.08%≤θ<0.29%
      S3 -中等损伤 0.29%≤θ<0.62%
      S4 -严重损伤 0.62%≤θ<0.96%
      S5 -垮塌 0.96%≤θ
      下载: 导出CSV

      表  4   C50混凝土材料属性[20]

      Table  4   Material properties of C50 concrete [20]

      密度/(kg·m-3) 弹性模量/GPa 泊松比 黏度系数µ/(s−1)
      2420 34.5 0.2 1×10-5
      膨胀角Ψ/(°) 偏心率ξ σb0/σc0 Kc
      38 0.1 1.16 2/3
      下载: 导出CSV

      表  5   钢筋材料属性[19]

      Table  5   Material properties of reinforcing steel[19]

      密度/(kg·m-3) 弹性模量/GPa 泊松比
      7800 210 0.3
      失效应变 失效强度/MPa 极限强度/MPa
      0.14 335 419
      下载: 导出CSV

      表  6   地震波选择

      Table  6   Determination of seismic waves

      编号 地震波名 时间 震级/MW PGA/g
      EQ1 Superstition Hills-1 1987 6.22 0.13
      EQ2 Parkfield-02_ CA 2004 6.00 0.62
      EQ3 Tottori_ Japan 2000 6.61 0.39
      EQ4 Kobe_ Japan 1995 6.90 0.32
      EQ5 Loma Prieta 1989 6.93 0.16
      EQ6 Kern County 1952 7.36 0.15
      EQ7 Parkfield 1966 6.19 0.24
      EQ8 Borrego Mtn 1968 6.63 0.16
      EQ9 Northridge-01 1994 6.69 0.23
      EQ10 ImperialValley-02 1940 6.95 0.28
      下载: 导出CSV

      表  7   地铁车站地震实际损伤概率

      Table  7   Actual probabilities of seismic damage in subway stations

      场地类型 轻微损伤 中等损伤 严重损伤 垮塌
      Ⅰ类场地 0.1132 0.0069 0.0007 0.0002
      Ⅱ类场地 0.4506 0.0911 0.0153 0.0067
      Ⅲ类场地 0.4042 0.1256 0.0335 0.0267
      下载: 导出CSV

      表  8   地铁车站功能损失和恢复时间

      Table  8   Losses of performance and recovery time of subway stations

      参数 Ⅰ类场地 Ⅱ类场地 Ⅲ类场地
      功能损失 0.0137 0.0861 0.1236
      恢复时间/d 0.1434 2.5475 7.6207
      下载: 导出CSV
    • [1] 钟紫蓝, 申轶尧, 郝亚茹, 等. 基于IDA方法的两层三跨地铁地下结构地震易损性分析[J]. 岩土工程学报, 2020, 42(5): 916-924. doi: 10.11779/CJGE202005014

      ZHONG Zilan, SHEN Yiyao, HAO Yaru, et al. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. (in Chinese) doi: 10.11779/CJGE202005014

      [2] 甄立斌, 史跃波, 钟紫蓝, 等. 基于耐震时程分析法的高效地下结构地震易损性分析[J]. 岩土工程学报, 2023, 45(4): 777-784. doi: 10.11779/CJGE20220188

      ZHEN Libin, SHI Yuebo, ZHONG Zilan, et al. Efficient seismic fragility of underground structures using endurance time analysis method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 777-784. (in Chinese) doi: 10.11779/CJGE20220188

      [3]

      HUANG Z K, ZHANG D M, PITILAKIS K, et al. Resilience assessment of tunnels: Framework and application for tunnels in alluvial deposits exposed to seismic hazard[J]. Soil Dynamics and Earthquake Engineering, 2022, 162: 107456. doi: 10.1016/j.soildyn.2022.107456

      [4]

      CUI C Y, XU M Z, XU C S, et al. An ontology-based probabilistic framework for comprehensive seismic risk evaluation of subway stations by combining Monte Carlo simulation[J]. Tunnelling and Underground Space Technology, 2023, 135: 105055. doi: 10.1016/j.tust.2023.105055

      [5] 朱旻, 陈湘生, 夏长青, 等. 地面堆载下盾构隧道结构韧性演化规律研究[J]. 岩土工程学报, 2024, 46(1): 35-44. doi: 10.11779/CJGE20221258

      ZHU Min, CHEN Xiangsheng, XIA Changqing, et al. Resilience evolution of shield tunnel structure under ground surcharge[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 35-44. (in Chinese) doi: 10.11779/CJGE20221258

      [6] 林星涛, 陈湘生, 苏栋, 等. 考虑多次扰动影响的盾构隧道结构韧性评估方法及其应用[J]. 岩土工程学报, 2022, 44(4): 591-601. doi: 10.11779/CJGE202204001

      LIN Xingtao, CHEN Xiangsheng, SU Dong, et al. Evaluation method for resilience of shield tunnel linings considering multiple disturbances and its application[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 591-601. (in Chinese) doi: 10.11779/CJGE202204001

      [7]

      LYSMER J, KUHLEMEYER R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, 1969, 95(4): 859-877. doi: 10.1061/JMCEA3.0001144

      [8]

      HU J, WEN W P, ZHAI C H, et al. Seismic resilience assessment of buildings considering the effects of mainshock and multiple aftershocks[J]. Journal of Building Engineering, 2023, 68: 106110. doi: 10.1016/j.jobe.2023.106110

      [9]

      HUANG Z K. Resilience evaluation of shallow circular tunnels subjected to earthquakes using fragility functions[J]. Applied Sciences, 2022, 12(9): 4728. doi: 10.3390/app12094728

      [10]

      CIMELLARO G P, REINHORN A M, BRUNEAU M, 2006. Quantification of seismic resilience[M]. Proc. 8th Nat. Conf. Earthquake Eng, 2006, 8: 1-10.

      [11]

      JIANG J W, XU C S, EL NAGGAR H M, et al. Improved pushover method for seismic analysis of shallow buried underground rectangular frame structure[J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106363. doi: 10.1016/j.soildyn.2020.106363

      [12]

      DU X L, JIANG J W, EL NAGGAR M H, et al. Interstory drift ratio associated with performance objectives for shallow-buried multistory and span subway stations in inhomogeneous soil profiles[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(2): 655-672.

      [13]

      JIANG J W, EL NAGGAR M H, DU X L, et al. Seismic fragility curves for shallow buried subway station using pushover-based method[J]. Tunnelling and Underground Space Technology, 2023, 135: 105059. doi: 10.1016/j.tust.2023.105059

      [14]

      Quantifcation of Building Seismic Performance Factors: FEMA-P695[S]. Federal Emergency Management Agency, 2009.

      [15]

      CIMELLARO G P, REINHORN A M, BRUNEAU M. Seismic resilience of a hospital system[J]. Structure and Infrastructure Engineering, 2010, 6(1/2): 127-144.

      [16]

      KASSEM M M, MOHAMED NAZRI F. Integrated approach between seismic resilience and vulnerability indexes with regularity index for vertical irregularity planar frames risk assessment[J]. Bulletin of Earthquake Engineering, 2023, 21(4): 1903-1941. doi: 10.1007/s10518-022-01588-5

      [17] 城市工程系统抗震韧性评价导则: RISN-TG041-2022[S]. 北京: 中国建筑工业出版社, 2022.

      Guideline for Evaluation of Seismic Resilience Assessment of Urban Engineering Systems: RISN-TG041-2022[S]. Beijing: China Architecture and Building Press, 2022. (in Chinese)

      [18]

      SUN Q Q, GUO X F, DIAS D. Evaluation of the seismic site response in randomized velocity profiles using a statistical model with Monte Carlo simulations[J]. Computers and Geotechnics, 2020, 120: 103442. doi: 10.1016/j.compgeo.2020.103442

      [19]

      HUANG Z, ZHANG C L, MA S K, et al. Study of the mechanical behaviour and damage characteristics of three new types of joints for fabricated rectangular tunnels using a numerical approach[J]. Tunnelling and Underground Space Technology, 2021, 118: 104184. doi: 10.1016/j.tust.2021.104184

      [20] 混凝土结构设计规范: GB50010—2010[S]. 北京: 中国建筑工业出版社, 2015.

      Code for Design of Concrete Structures: GB50010—2010[S]. Beijing: China Architecture and Building Press, 2015. (in Chinese)

      [21] 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑出版社, 2010.

      Code for Seismic Design of Building: GB 50011—2010[S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)

      [22]

      Pacific Earthquake Engineering Research Center (PEER). PEER Strong Motion Database[DB/OL]. Berkeley, CA: University of California, Berkeley, 2000.

    图(9)  /  表(8)
    计量
    • 文章访问数:  0
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-11-26
    • 网络出版日期:  2024-04-18
    • 刊出日期:  2024-12-31

    目录

      /

      返回文章
      返回