• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于广义剪应变的各向异性固结饱和砂土超静孔压发展模型

赵福堂, 吴祁新, 郑俊杰, 郑烨炜

赵福堂, 吴祁新, 郑俊杰, 郑烨炜. 基于广义剪应变的各向异性固结饱和砂土超静孔压发展模型[J]. 岩土工程学报, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122
引用本文: 赵福堂, 吴祁新, 郑俊杰, 郑烨炜. 基于广义剪应变的各向异性固结饱和砂土超静孔压发展模型[J]. 岩土工程学报, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122
ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122
Citation: ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122

基于广义剪应变的各向异性固结饱和砂土超静孔压发展模型  English Version

基金项目: 

国家重点研发计划项目 2022YFC3080400

国家自然科学基金项目 52208366

国家自然科学基金项目 52078392

详细信息
    作者简介:

    赵福堂(1990—),男,博士研究生,主要从事土动力学方面的研究工作。E-mail: zhaofutang314@whu.edu.cn

    通讯作者:

    郑烨炜, yzheng@whu.edu.cn

  • 中图分类号: TU435

Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation

  • 摘要: 各向异性固结条件下饱和砂土中超静孔隙水压力的发展规律对于理解砂土液化行为至关重要。使用空心圆柱扭剪仪进行了一系列扭剪试验,研究了初始固结条件(初始平均有效应力p'0、固结应力比K)和循环加载条件(循环应力比CSR)对饱和砂土的广义剪应变γg和超静孔压比ru发展规律的影响。试验结果表明,各向异性固结条件下的砂土表现出三类破坏模式:循环迁移、循环液化和残余累积变形。在所有3种破坏模式下,归一化超静孔压比ru, n都与γg相关。据此提出了考虑各向异性固结条件的饱和砂土超静孔隙水压力预测模型。该模型能合理预测不同固结应力状态下超孔隙水压力的发展。
    Abstract: The development pattern of the excess pore water pressure in saturated sand under anisotropic consolidation conditions is crucial for understanding the liquefaction behavior of sand. In this study, a series of torsional shear tests are conducted using the hollow-cylinder torsional apparatus to examine the influences of the initial consolidation conditions (initial mean effective stress p'0 and consolidation stress ratio K) and cyclic loading conditions (cyclic stress ratio, CSR) on the development patterns of the generalized shear strain (γg) and excess pore water pressure ratio (ru) in saturated sand. The experimental results indicate that the sands under anisotropic consolidation exhibit three failure modes: cyclic mobility, cyclic liquefaction and residual cumulative deformation. The normalized ru can be correlated with γg for all the three failure modes. A prediction model for the excess pore pressure is proposed considering the anisotropic consolidation conditions for saturated sand. The model can reasonably predict the development of pore water pressure under different consolidation stress states.
  • 图  1   福建砂级配曲线

    Figure  1.   Grain-size distribution curve of Fujian sand

    图  2   GDS空心圆柱扭剪装置

    Figure  2.   GDS hollow cylinder torsional shear system

    图  3   试样应力状态

    Figure  3.   Stress states of specimen

    图  4   固结与循环加载的应力路径

    Figure  4.   Stress paths consolidation and cyclic loading

    图  5   应变分量与循环次数的关系

    Figure  5.   Relationship between strain components and number of cycles

    图  6   循环有效应力路径

    Figure  6.   Cyclic effective stress paths

    图  7   超静孔压与循环次数关系

    Figure  7.   Relationship between excess pore water pressure and number of cycles

    图  8   静力有效应力路径

    Figure  8.   Static effective stress path

    图  9   相变摩擦角与固结应力比关系

    Figure  9.   Relationship between friction angle of phase transformation and consolidation stress ratio

    图  10   破坏包络线与破坏摩擦角

    Figure  10.   Failure envelope and friction angle of failure

    图  11   各向异性固结砂的孔压发展

    Figure  11.   Development of excess pore water pressure in anisotropically consolidated sands

    图  12   峰值孔压比与固结应力比关系

    Figure  12.   Relationship between peak pore pressure ratio and consolidation stress ratio

    图  13   归一化的超静孔压比与广义剪应变关系

    Figure  13.   Normalized pore pressure ratio versus generalized shear.strain

    图  14   模型预测值与本文试验数据的对比( = 100 kPa)

    Figure  14.   Comparison between model prediction and experimental data reported by this study ( = 100 kPa)

    图  15   预测模型与参考文献[22]和[23]中的试验数据的对比

    Figure  15.   Validation of prediction model against experimental data reported by References [22] and [23]

    表  1   福建砂基本物理性质指标

    Table  1   Physical property indexes of Fujian sand

    d50 Cu Gs emax emin
    0.35 2.92 2.65 0.73 0.51
    下载: 导出CSV

    表  2   各向异性固结砂循环加载试验方案

    Table  2   Test programs for cyclic loading of anisotropically consolidated sand

    Test no. 固结状态 /kPa CSR Test no. 固结状态 /kPa CSR
    1 拉伸 100 0.6 0.175 21 拉伸 200 0.8 0.200
    2 拉伸 100 0.6 0.200 22 各向同性 200 1.0 0.200
    3 拉伸 100 0.6 0.250 23 各向同性 200 1.0 0.225
    4 拉伸 100 0.8 0.175 24 各向同性 200 1.0 0.250
    5 拉伸 100 0.8 0.200 25 压缩 200 1.5 0.200
    6 拉伸 100 0.8 0.250 26 压缩 200 1.5 0.2125
    7 各向同性 100 1.0 0.200 27 压缩 200 1.5 0.250
    8 各向同性 100 1.0 0.250 28 压缩 200 2.0 0.250
    9 各向同性 100 1.0 0.300 29 压缩 200 2.0 0.275
    10 压缩 100 1.5 0.250 30 压缩 200 2.0 0.2875
    11 压缩 100 1.5 0.300 31 拉伸 100 0.6 (静载)
    12 压缩 100 1.5 0.350 32 拉伸 100 0.8 (静载)
    13 压缩 100 2.0 0.300 33 各向同性 100 1.0 (静载)
    14 压缩 100 2.0 0.350 34 压缩 100 1.5 (静载)
    15 压缩 100 2.0 0.400 35 压缩 100 2.0 (静载)
    16 拉伸 200 0.6 0.1375 36 拉伸 200 0.6 (静载)
    17 拉伸 200 0.6 0.175 37 拉伸 200 0.8 (静载)
    18 拉伸 200 0.6 0.1875 38 各向同性 200 1.0 (静载)
    19 拉伸 200 0.8 0.150 39 压缩 200 1.5 (静载)
    20 拉伸 200 0.8 0.1875 40 压缩 200 2.0 (静载)
    下载: 导出CSV
  • [1] 张克绪. 饱和砂土的液化应力条件[J]. 地震工程与工程振动, 1984, 4(1): 99-109.

    ZHANG Kexu. Stress condition inducing liquefaction of saturated sand[J]. Earthquake Engineering and Engineering Vibration, 1984, 4(1): 99-109. (in Chinese)

    [2] 陈国兴. 岩土地震工程学[M]. 北京: 科学出版社, 2007.

    CHEN Guoxing. Geotechnical Earthquake Engineering[M]. Beijing: Science Press, 2007. (in Chinese)

    [3]

    SEED H B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J]. Journal of the Geotechnical Engineering Division, 1979, 105(2): 201-255. doi: 10.1061/AJGEB6.0000768

    [4] 张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50. http://cge.nhri.cn/article/id/14487

    ZHANG Jianmin. New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1-50. (in Chinese) http://cge.nhri.cn/article/id/14487

    [5] 张建民, 王刚. 砂土液化后大变形的机理[J]. 岩土工程学报, 2006, 28(7): 835-840. doi: 10.3321/j.issn:1000-4548.2006.07.006

    ZHANG Jianmin, WANG Gang. Mechanism of large post-liquefaction deformation in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 835-840. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.07.006

    [6] 刘汉龙, 周云东, 高玉峰. 砂土地震液化后大变形特性试验研究[J]. 岩土工程学报, 2002, 24(2): 142-146. doi: 10.3321/j.issn:1000-4548.2002.02.003

    LIU Hanlong, ZHOU Yundong, GAO Yufeng. Study on the behavior of large ground displacement of sand due to seismic liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 142-146. (in Chinese) doi: 10.3321/j.issn:1000-4548.2002.02.003

    [7] 陈国兴, 刘雪珠. 循环荷载作用下南京片状细砂的不排水动力性态[J]. 岩土工程学报, 2009, 31(10): 1498-1504. doi: 10.3321/j.issn:1000-4548.2009.10.004

    CHEN Guoxing, LIU Xuezhu. Undrained cyclic behaviors of Nanjing flake-shaped fine sand under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1498-1504. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.004

    [8] 许成顺, 高英, 杜修力, 等. 双向耦合剪切条件下饱和砂土动强度特性试验研究[J]. 岩土工程学报, 2014, 36(12): 2335-2340. doi: 10.11779/CJGE201412024

    XU Chengshun, GAO Ying, DU Xiuli, et al. Dynamic strength of saturated sand under bi-directional cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2335-2340. (in Chinese) doi: 10.11779/CJGE201412024

    [9] 陈育民, 刘汉龙, 周云东. 液化及液化后砂土的流动特性分析[J]. 岩土工程学报, 2006, 28(9): 1139-1143. doi: 10.3321/j.issn:1000-4548.2006.09.017

    CHEN Yumin, LIU Hanlong, ZHOU Yundong. Analysis on flow characteristics of liquefied and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1139-1143. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.017

    [10] 庄海洋, 胡中华, 王瑞, 等. 饱和南京细砂初始液化后特大流动变形特性试验研究[J]. 岩土工程学报, 2016, 38(12): 2164-2174. doi: 10.11779/CJGE201612004

    ZHUANG Haiyang, HU Zhonghua, WANG Rui, et al. Cyclic torsional shear loading tests on the extremely large post-liquefaction flow deformation of saturated Nanjing sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2164-2174. (in Chinese) doi: 10.11779/CJGE201612004

    [11] 庄海洋, 胡中华, 王瑞, 等. 南京饱和细砂液化后大变形条件下动剪切模量衰减特征研究[J]. 岩土力学, 2017, 38(12): 3445-3452, 3461.

    ZHUANG Haiyang, HU Zhonghua, WANG Rui, et al. Shear moduli reduction of saturated Nanjing sand under large deformation induced by liquefaction[J]. Rock and Soil Mechanics, 2017, 38(12): 3445-3452, 3461. (in Chinese)

    [12]

    ZHOU X Z, STUEDLEIN A W, CHEN Y M, et al. Cyclic response of loose anisotropically consolidated calcareous sand under progressive wave-induced elliptical stress paths[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 04020143. doi: 10.1061/(ASCE)GT.1943-5606.0002422

    [13]

    CHEN G X, WU Q, ZHOU Z L, et al. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation[J]. Géotechnique, 2020, 70(4): 317-331. doi: 10.1680/jgeot.18.P.180

    [14]

    SEED H B, MARTIN P P, LYSMER J. Pore-water pressure changes during soil liquefaction[J]. Journal of the Geotechnical Engineering Division, 1976, 102(4): 323-346. doi: 10.1061/AJGEB6.0000258

    [15]

    CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057

    [16] 何广讷. 评价土体液化势的能量法[J]. 岩土工程学报, 1981, 3(4): 11-21. doi: 10.3321/j.issn:1000-4548.1981.04.002

    HE Guangna. Energy analysis procedure for evaluating soil liquefaction potential[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(4): 11-21. (in Chinese) doi: 10.3321/j.issn:1000-4548.1981.04.002

    [17]

    NEMAT-NASSER S, SHOKOOH A. A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing[J]. Canadian Geotechnical Journal, 1979, 16(4): 659-678. doi: 10.1139/t79-076

    [18] 孙锐, 袁晓铭. 非均等固结下饱和砂土孔压增量简化计算公式[J]. 岩土工程学报, 2005, 27(9): 1021-1025. doi: 10.3321/j.issn:1000-4548.2005.09.010

    SUN Rui, YUAN Xiaoming. Simplified incremental formula for estimating pore water pressure of saturated sands under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1021-1025. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.09.010

    [19] 郭莹. 复杂应力条件下饱和松砂的不排水动力特性试验研究[D]. 大连: 大连理工大学, 2003.

    GUO Ying. Experimental Study on Undrained Dynamic Characteristics of Saturated Loose Sand under Complex Stress Conditions[D]. Dalian: Dalian University of Technology, 2003. (in Chinese)

    [20]

    CHEN G X, MA W J, QIN Y, et al. Liquefaction susceptibility of saturated coral sand subjected to various patterns of principal stress rotation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(9): 04021093. doi: 10.1061/(ASCE)GT.1943-5606.0002590

    [21]

    VAID Y P, CHERN J C. Effect of static shear on resistance to liquefaction[J]. Soils and Foundation, 1983, 23(1): 47-60. doi: 10.3208/sandf1972.23.47

    [22] 马维嘉, 陈国兴, 秦悠, 等. 初始主应力方向角对饱和珊瑚砂液化特性影响的试验[J]. 岩土工程学报, 2020, 42(3): 592-600. doi: 10.11779/CJGE202003022

    MA Weijia, CHEN Guoxing, QIN You, et al. Experimental studies on effects of initial major stress direction angles on liquefaction characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 592-600. (in Chinese) doi: 10.11779/CJGE202003022

    [23] 马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981-988. doi: 10.11779/CJGE201905023

    MA Weijia, CHEN Guoxing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981-988. (in Chinese) doi: 10.11779/CJGE201905023

  • 期刊类型引用(13)

    1. 满轲,柳宗旭,商艳,宋志飞,刘晓丽,苏宝. 基于灰色关联分析下深度学习盾构姿态预测模型. 工程科学与技术. 2025(02): 203-213 . 百度学术
    2. 满轲,曹子祥,刘晓丽,宋志飞,柳宗旭,刘汭琳,武立文. 地质突变条件下基于组合模型的围岩等级和TBM掘进参数预测. 河海大学学报(自然科学版). 2024(01): 55-62 . 百度学术
    3. 邓志兴,谢康,李泰灃,苏谦,韩征,肖宪普. 基于机器学习的高铁边坡位移预测不确定性度量与应用. 中国铁道科学. 2024(01): 56-67 . 百度学术
    4. 姜浩,郑亚强,金治军,马庆,董强,郑德焰,林峰,赵炳武. 基于ANN算法的钢结构安装工程质量状态评价. 化工管理. 2024(06): 102-109 . 百度学术
    5. 郝晶晶,段鹏鑫,陈雨欣,段晓晨. 基于IGWO-SVR的地铁车站投资预测. 铁道学报. 2024(05): 179-188 . 百度学术
    6. 张洁. 新疆超长隧洞TBM智能掘进施工方法研究. 黑龙江水利科技. 2024(08): 123-125 . 百度学术
    7. 林平,李有鹏,谭彬. 基于Bootstrap方法和LSSVM模型的滑坡位移区间预测. 测绘与空间地理信息. 2024(09): 48-51+56 . 百度学术
    8. 张琦,甘超,曹卫华. 大洋钻探过程钻速在线区间预测方法——以微型钻探船室内模拟实验为例. 钻探工程. 2024(05): 45-52 . 百度学术
    9. 赵高峰,姜宝元,芮福鑫,马洪素,李洁勇,赵晓豹,龚秋明. 基于数值仿真的复杂岩体TBM掘进性能评估模型. 中南大学学报(自然科学版). 2023(03): 984-997 . 百度学术
    10. 常建涛,乔子萱,孔宪光,杨胜康,罗才文. 多维非线性特征重构与融合的复杂产品工期预测方法. 机械工程学报. 2023(06): 294-308 . 百度学术
    11. 禹海涛,朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析. 隧道与地下工程灾害防治. 2023(03): 19-26 . 百度学术
    12. 彭继慎,郝茗,宋立业,李希桐. 基于TSSA-SVR算法的TBM掘进速度预测. 辽宁工程技术大学学报(自然科学版). 2023(05): 634-640 . 百度学术
    13. 闫静,张雪英,李凤莲,陈桂军,黄丽霞. 结合栈式监督AE与可变加权ELM的回归预测模型. 计算机工程. 2022(08): 62-69+76 . 百度学术

    其他类型引用(11)

图(15)  /  表(2)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  25
  • PDF下载量:  91
  • 被引次数: 24
出版历程
  • 收稿日期:  2023-11-16
  • 网络出版日期:  2024-05-12
  • 刊出日期:  2025-01-31

目录

    /

    返回文章
    返回