• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

应力-渗流-溶蚀耦合作用下三维岩石裂隙渗透特性数值计算研究

申林方, 吕倩文, 刘文连, 张家明, 杨鸿忠, 李泽

申林方, 吕倩文, 刘文连, 张家明, 杨鸿忠, 李泽. 应力-渗流-溶蚀耦合作用下三维岩石裂隙渗透特性数值计算研究[J]. 岩土工程学报, 2025, 47(2): 428-437. DOI: 10.11779/CJGE20231061
引用本文: 申林方, 吕倩文, 刘文连, 张家明, 杨鸿忠, 李泽. 应力-渗流-溶蚀耦合作用下三维岩石裂隙渗透特性数值计算研究[J]. 岩土工程学报, 2025, 47(2): 428-437. DOI: 10.11779/CJGE20231061
SHEN Linfang, LÜ Qianwen, LIU Wenlian, ZHANG Jiaming, YANG Hongzhong, LI Ze. Numerical study on permeability properties of three-dimensional rock fracture under coupled stress-seepage-dissolution process[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 428-437. DOI: 10.11779/CJGE20231061
Citation: SHEN Linfang, LÜ Qianwen, LIU Wenlian, ZHANG Jiaming, YANG Hongzhong, LI Ze. Numerical study on permeability properties of three-dimensional rock fracture under coupled stress-seepage-dissolution process[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 428-437. DOI: 10.11779/CJGE20231061

应力-渗流-溶蚀耦合作用下三维岩石裂隙渗透特性数值计算研究  English Version

基金项目: 

国家自然科学基金项目 42167022

详细信息
    作者简介:

    申林方(1982—),女,博士,教授,主要从事水岩多场耦合方面的研究工作。E-mail: linfangshen@126.com

    通讯作者:

    张家明, E-mail: zhangjiaming@kust.edu.cn

  • 中图分类号: TU45

Numerical study on permeability properties of three-dimensional rock fracture under coupled stress-seepage-dissolution process

  • 摘要: 基于格子Boltzmann方法采用双分布函数分别模拟渗流速度场与溶质浓度场的演化过程,建立了三维岩石裂隙应力-渗流-溶蚀耦合作用机制的数值计算模型,并讨论了渗流流速、法向应力、溶蚀反应速率等因素对裂隙渗透特性演化规律的影响。结果表明:在渗流流速较低时,壁面溶蚀出来的离子得不到及时输运,使得出口处浓度较高溶蚀速度慢,裂隙结构呈“喇叭口”状。增大法向应力会减小裂隙开度,减慢溶质的运移速率,使得裂隙出口处的溶蚀速率显著降低,从而限制了其渗透率的发展。当壁面溶蚀反应速率较小时,裂隙渗透率呈持续缓慢增长的状态;随着溶蚀反应速率增加,出口处的溶蚀量会明显小于入口处,导致出口处壁面发生显著溶蚀之前,裂隙渗透率发展缓慢,此后渗透率便呈急速突变增长趋势。研究成果能够为酸蚀作用下岩石裂隙渗透能力的定量评价提供重要理论支撑。
    Abstract: Based on the lattice Boltzmann method, the evolution of seepage velocity field and solute concentration field is simulated by the double-distribution functions, and a numerical model is proposed to study the coupling mechanism of stress-seepage-dissolution in three-dimensional rock fracture. The evolution of fracture permeability properties is discussed considering the effects of seepage velocity, normal stress and dissolution rate. The results show that when the seepage velocity is low, the ions dissolved from the fracture wall cannot be transported in time, which results in a higher concentration and a lower dissolution rate at the outlet, the dissolved fracture is shaped as a "bell mouth". Increasing the normal stress decreases the fracture width and slows down the solute transport rate, which significantly reduces the dissolution at the fracture outlet, limiting the development of its permeability. When the wall dissolution rate is low, the fracture permeability shows a continuous and slow growth. As the dissolution rate increases, the dissolution amount at the outlet is significantly less than that at the inlet, which leads to a slow development of fracture permeability until the wall surface at the outlet exhibits significant dissolution, and the fracture permeability shows a rapid growth trend. The results can provide important theoretical support for the quantitative evaluation of permeability of rock fracture under acid corrosion.
  • 图  1   D3Q19模型

    Figure  1.   D3Q19 model

    图  2   中心插值法示意图

    Figure  2.   Diagram of midpoint interpolation method

    图  3   中心插值法生成的三维粗糙裂隙面

    Figure  3.   Three-dimensional rough fracture surface generated by midpoint interpolation method

    图  4   三维粗糙裂隙结构构建示意图

    Figure  4.   Diagram for generating three-dimensional rough fracture structure

    图  5   不同法向应力作用下的裂隙开度分布

    Figure  5.   Distribution of fracture aperture under different normal stresses

    图  6   对流-扩散问题示意图

    Figure  6.   Diagram of convection diffusion problem

    图  7   溶质浓度分布的本文数值解与解析解对比

    Figure  7.   Comparison between proposed numerical and analytical solutions for solute concentration distribution

    图  8   反应-扩散问题示意图

    Figure  8.   Diagram of reaction diffusion problem

    图  9   本文数值解与解析解的浓度等值线图对比

    Figure  9.   Comparison between proposed numerical of iso- concentrations contours and analytical solution

    图  10   不同渗流流速作用下的裂隙溶蚀形貌

    Figure  10.   Corrosion morphology of fractures under different flow velocities

    图  11   不同渗流流速作用下的溶质浓度分布

    Figure  11.   Distribution of solute concentration under different flow velocities

    图  12   不同渗流流速作用下裂隙渗透率时程演化曲线

    Figure  12.   Evolution curves of time history of fracture permeability under different flow velocities

    图  13   不同法向应力作用下裂隙的溶蚀形貌

    Figure  13.   Corrosion morphologies of fractures under different normal stresses

    图  14   不同法向应力作用下的溶质浓度分布

    Figure  14.   Distribution of solute concentration under different normal stresses

    图  15   不同法向应力作用下裂隙渗透率时程演化曲线

    Figure  15.   Evolution curves of time history of fracture permeability under different normal stresses

    图  16   不同溶蚀反应速率作用下的裂隙溶蚀形貌

    Figure  16.   Corrosion morphology of fractures under different sdissolution rates

    图  17   不同溶蚀反应速率作用下的溶质浓度分布

    Figure  17.   Distribution of solute concentration under different dissolution rates

    图  18   不同溶蚀反应速率作用下裂隙渗透率时程演化曲线

    Figure  18.   Evolution curves of time history of fracture permeability under different dissolution rates

    表  1   格子步长对计算结果影响

    Table  1   Influences of lattice space on computational results

    格子步长/mm 计算网格 最大相对误差/% 计算耗时/s
    0.4 25×5×5 0.150 0.13
    0.2 50×10×10 0.036 1.67
    0.1 100×20×20 0.009 49
    0.05 200×40×40 0.002 1323
    下载: 导出CSV
  • [1] 盛金昌, 李凤滨, 姚德生, 等. 渗流-应力-化学耦合作用下岩石裂隙渗透特性试验研究[J]. 岩石力学与工程学报, 2012, 31(5): 1016-1025. doi: 10.3969/j.issn.1000-6915.2012.05.019

    SHENG Jinchang, LI Fengbin, YAO Desheng, et al. Experimental study of seepage properties in rocks fracture under coupled hydro- mechanochemical process[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 1016-1025. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.05.019

    [2] 姚池, 姜清辉, 位伟, 等. 复杂裂隙岩体水-力耦合模型及溶质运移模拟[J]. 岩石力学与工程学报, 2013, 32(8): 1656-1665.

    YAO Chi, JIANG Qinghui, WEI Wei, et al. Numerical simulation of hydro-mechanical coupling and solute transport in complex fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1656-1665. (in Chinese)

    [3] 王珂, 盛金昌, 郜会彩, 等. 应力-渗流侵蚀耦合作用下粗糙裂隙渗流特性研究[J]. 岩土力学, 2020, 41(增刊1): 30-40.

    WANG Ke, SHENG Jinchang, GAO Huicai, et al. Study on seepage characteristics of rough fractures under the coupling effect of stress-seepage erosion[J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40. (in Chinese)

    [4] 段玲玲, 邓华锋, 齐豫, 等. 水-岩作用下单裂隙灰岩渗流特性演化规律研究[J]. 岩土力学, 2020, 41(11): 3671-3679, 3768.

    DUAN Lingling, DENG Huafeng, QI Yu, et al. Study on the evolution of seepage characteristics of single-fractured limestone under water-rock interaction[J]. Rock and Soil Mechanics, 2020, 41(11): 3671-3679, 3768. (in Chinese)

    [5]

    GAN L, LIU Y, XU T, et al. Experimental investigation of the seepage characteristics of a single fracture in limestone with different roughness and seepage fluids[J]. Journal of Hydrology, 2023, 622: 129699. doi: 10.1016/j.jhydrol.2023.129699

    [6]

    WANG J X, YU Q C. Experimental investigations of the process of carbonate fracture dissolution enlargement under reservoir temperature and pressure conditions[J]. Geofluids, 2018, 2018: 5971421.

    [7] 速宝玉, 张文捷, 盛金昌, 等. 渗流-化学溶解耦合作用下岩石单裂隙渗透特性研究[J]. 岩土力学, 2010, 31(11): 3361-3366. doi: 10.3969/j.issn.1000-7598.2010.11.001

    SU Baoyu, ZHANG Wenjie, SHENG Jinchang, et al. Study of permeability in single fracture under effects of coupled fluid flow and chemical dissolution[J]. Rock and Soil Mechanics, 2010, 31(11): 3361-3366. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.11.001

    [8] 霍吉祥, 宋汉周, 杜京浓, 等. 表面反应和扩散迁移联合控制的粗糙单裂隙渗流-溶解耦合模型[J]. 岩石力学与工程学报, 2015, 34(5): 1013-1021.

    HUO Jixiang, SONG Hanzhou, DU Jingnong, et al. Coupled fluid flow and chemical dissolution model based on surface reaction and mass transfer control in a rough fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 1013-1021. (in Chinese)

    [9] 李博, 黄嘉伦, 钟振, 等. 三维交叉裂隙渗流传质特性数值模拟[J]. 岩土力学, 2019, 40(9): 3670-3678.

    LI Bo, HUANG Jialun, ZHONG Zhen, et al. Numerical simulation on hydraulic and solute transport properties of 3D crossed fractures[J]. Rock and Soil Mechanics, 2019, 40(9): 3670-3678. (in Chinese)

    [10] 王俊光, 梁冰. 渗透动水压力作用下裂隙岩体渗流与应力耦合分析[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(增刊1): 178-180.

    WANG Junguang, LIANG Bing. Analysis of coupled seepage and stress fields in rock mass by considering hydrodynamic seepage pressure[J]. Journal of Liaoning Technical University (Natural Science), 2009, 28(S1): 178-180. (in Chinese)

    [11] 张超, 宋卫东, 李腾, 等. 破碎岩体应力-渗流耦合模型及数值模拟研究[J]. 采矿与安全工程学报, 2021, 38(6): 1220-1230.

    ZHANG Chao, SONG Weidong, LI Teng, et al. Study on stress seepage coupling model and numerical simulation of fractured rock mass[J]. Journal of Mining & Safety Engineering, 2021, 38(6): 1220-1230. (in Chinese)

    [12]

    MOHAMAD A A. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes[M]. London: LondonSpringer, 2011

    [13]

    TIAN Z W, XING H L, TAN Y L, et al. Reactive transport LBM model for CO2 injection in fractured reservoirs[J]. Computers & Geosciences, 2016, 86: 15-22.

    [14]

    CHEN L, KANG Q, VISWANATHAN H S, et al. Pore-scale study of dissolution-induced changes in hydrologic properties of rocks with binary minerals[J]. Water Resources Research, 2014, 50(12): 9343-9365. doi: 10.1002/2014WR015646

    [15] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟[J]. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701

    ZHANG Ting, SHI Baochang, CHAI Zhenhua. Lattice Boltzmann simulation of dissolution and precipitation in porous media[J]. Acta Physica Sinica, 2015, 64(15): 154701. (in Chinese) doi: 10.7498/aps.64.154701

    [16]

    BANDIS S C, LUMSDEN A C, BARTEN N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1983, 20(6): 249-268.

    [17]

    QIAN Y H, D'HUMIERES D, LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484. doi: 10.1209/0295-5075/17/6/001

    [18]

    KANG Q, LICHTNER P C, ZHANG D. Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media [J]. Journal of Geophysical Research, 2006, 111: B05203.

    [19]

    ZHANG T, SHI B, GUO Z, et al. General bounce-back scheme for concentration boundary condition in the lattice Boltzmann method[J]. Physical Review E, 2012, 85(2): 016701.

    [20]

    GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4): 366-374. doi: 10.1088/1009-1963/11/4/310

    [21]

    FOURNIER A, FUSSELL D, CARPENTER L. Computer rendering of stochastic models[J]. Communications of the ACM, 1982, 25(6): 371-384. doi: 10.1145/358523.358553

    [22]

    ZOU L, JING L, CVETKOVIC V. Shear-enhanced nonlinear flow in rough-walled rock fractures[J]. Journal of Rock Mechanics and Mining Sciences, 2017, 97: 33-45. doi: 10.1016/j.ijrmms.2017.06.001

    [23]

    SAUTY J P. An analysis of hydrodispersive transfer in aquifers[J]. Water Resources Research, 1980, 16(1): 145-158. doi: 10.1029/WR016i001p00145

    [24]

    KANG Q, LICHTNER P C, ZHANG D. An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale[J]. Water Resources Research, 2007, 43(12): 2578-2584.

  • 期刊类型引用(4)

    1. 王艳,薛逸翔,朱鹏. 电动联合渗透反应屏障修复污染土壤的研究进展. 安全与环境学报. 2024(01): 330-344 . 百度学术
    2. 周细霞,刘朝淑,孙荣国. Fe(II)改性蒙脱石对土壤汞的吸附固定机理探究. 贵州师范大学学报(自然科学版). 2024(04): 63-74 . 百度学术
    3. 王艳,张李奕岚,朱鹏,王恒宇. 电动法去除污染土中重金属铬的试验研究. 安全与环境学报. 2024(08): 3251-3259 . 百度学术
    4. 李宗春,郭苗章,谌伟艳. 某废弃矿山重金属污染土壤治理约束优化研究. 环境科学与管理. 2023(05): 71-75 . 百度学术

    其他类型引用(3)

图(18)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-11-29
  • 网络出版日期:  2024-04-17
  • 刊出日期:  2025-01-31

目录

    /

    返回文章
    返回