• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

微生物加固渠基粉土的冻融特性及微细观机理研究

朱锐, 邢玮, 郭万里, 黄英豪, 周峰, 王旭东

朱锐, 邢玮, 郭万里, 黄英豪, 周峰, 王旭东. 微生物加固渠基粉土的冻融特性及微细观机理研究[J]. 岩土工程学报, 2025, 47(2): 376-387. DOI: 10.11779/CJGE20231014
引用本文: 朱锐, 邢玮, 郭万里, 黄英豪, 周峰, 王旭东. 微生物加固渠基粉土的冻融特性及微细观机理研究[J]. 岩土工程学报, 2025, 47(2): 376-387. DOI: 10.11779/CJGE20231014
ZHU Rui, XING Wei, GUO Wanli, HUANG Yinghao, ZHOU Feng, WANG Xudong. Freeze-thaw performance and micro-mechanism of canal foundation silt treated by MICP[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 376-387. DOI: 10.11779/CJGE20231014
Citation: ZHU Rui, XING Wei, GUO Wanli, HUANG Yinghao, ZHOU Feng, WANG Xudong. Freeze-thaw performance and micro-mechanism of canal foundation silt treated by MICP[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 376-387. DOI: 10.11779/CJGE20231014

微生物加固渠基粉土的冻融特性及微细观机理研究  English Version

基金项目: 

新疆自治区中央引导地方科技项目 ZYYD2024CG20

国家自然科学基金项目 52408372

中国博士后科学基金面上项目 2023M744276

江苏省自然科学基金项目 BK20220356

流域水循环模拟与调控国家重点实验室开放课题 IWHR-SKL-F202319

水利部水库大坝安全重点实验室项目 YK324009

详细信息
    作者简介:

    朱锐(1992—),男,博士,讲师,主要从事桩土相互作用、特殊土边坡安全与防护方面研究工作。E-mail: zhurui@njtech.edu.cn

  • 中图分类号: TU432

Freeze-thaw performance and micro-mechanism of canal foundation silt treated by MICP

  • 摘要: 渠基土性能冻融劣化是中国季冻区渠道结构损坏的主要原因,渠基土加固是保障供水渠道安全运行的重要手段。结合微生物岩土加固技术,开展微生物加固渠基粉土系列宏微观室内试验,刻画不同胶结液浓度、养护龄期、冻融循环下加固渠基粉土的体变率、渗透系数、孔隙率等宏微观指标的发展规律及其定量联系。结果表明:在不同胶结液浓度、养护龄期下,微生物加固可使得渠基粉土的冻融体变量削减约70%,渗透系数至少降低一个数量级、抗压强度提升约220.17%,抗剪强度指标最高增长约65.50%;当胶结液浓度为1.00 mol/L,养护龄期为28 d时,冻融循环下渠基粉土的微生物加固效果最优。此外,微生物诱导生成的碳酸钙沉淀通过填充、胶结、包裹等系列方式重塑了渠基粉土的微细观结构,使其在冻融风化作用下仍然保持整体性和完整性,这是微生物加固渠基粉土在冻融环境下仍然展现出良好工程特性的主要原因。
    Abstract: The freeze-thaw deterioration characteristics of foundation soil are the main cause for damages of canal slopes in seasonally frozen areas. The soil treatment is an important means to ensure the safe operation of canals. Based on the microbially induced calcium carbonate precipitation (MICP) technique, a series of laboratory tests on treated silt with different concentrations, curing ages and freeze-thaw cycles are conducted. The macro-and micro-indices of treated silt, such as volumetric rate, permeability coefficient and porosity, are described, and their quantitative relationships are established. The results show that under different concentrations and curing ages, the treatment can reduce the freeze-thaw deformation by 70%, decrease the permeability coefficient by at least one order of magnitude, increase the compressive strength by 220.17%, and improve the shear strength index by 65.50%. As the concentration is 1.00 mol/L and the curing age is 28 days, the treatment effects of silt under freeze-thaw cycles are the most significant. In addition, the calcium carbonate precipitation induced by the MICP reshapes the microstructure of silt through a series of processes such as filling, cementation and encapsulation, which ensures the integrity of silt subjected to freeze-thaw cycles. It is also the main reason for the good engineering properties of treated silt in freeze-thaw environments.
  • 图  1   试验所用渠基土料

    Figure  1.   Soil materials for laboratory tests

    图  2   试样制备及试验流程

    Figure  2.   Specimen preparation and testing processes

    图  3   未加固与加固试样体积变化率

    Figure  3.   Volumetric rates of untreated and treated specimens

    图  4   代表性试样应力-应变关系

    Figure  4.   Typical strain-stress relations of specimens

    图  5   未加固与加固试样弹性模量对比图

    Figure  5.   Elastic moduli of untreated and treated specimens

    图  6   未加固与加固试样破坏强度对比图

    Figure  6.   Failure strengths of untreated and treated specimens

    图  7   未加固与加固试样黏聚力对比图

    Figure  7.   Cohesions of untreated and treated specimens

    图  8   未加固与加固试样内摩擦角对比图

    Figure  8.   Internal friction angels of untreated and treated specimens

    图  9   未加固与加固试样渗透系数对比图

    Figure  9.   Permeability coefficients of untreated and treated specimens

    图  10   试样损伤度随冻融循环的变化曲线

    Figure  10.   Variation curves of damage degree with freeze-thaw cycles

    图  11   不同胶结液浓度、养护龄期下加固试样微观形态对比图(未经历冻融)

    Figure  11.   Microstructures of treated specimens under different concentrations and curing ages (freeze-thaw cycle of 0)

    图  12   冻融循环下未加固与加固试样微观形态

    Figure  12.   Microstructures of untreated and treated specimens subjected to freeze-thaw cycles

    图  13   未加固与加固试样孔隙面积对比图

    Figure  13.   Pore areas of untreated and treated specimens

    图  14   未加固与加固试样孔隙率对比图

    Figure  14.   Porosities of untreated and treated specimens

    图  15   未加固与加固试样分形维数对比图

    Figure  15.   Fractal dimensions of untreated and treated specimens

    图  16   冻融循环下加固试样微观参数与宏观指标的定量联系

    Figure  16.   Quantitative relationships between micro-parameters and macro-indices of treated specimens under freeze-thaw cycles

    图  17   加固试样物相组成

    Figure  17.   Phase compositions of treated specimens

    图  18   试样颗粒级配随冻融循环的变化曲线

    Figure  18.   Variation curves of PSD with freeze-thaw cycles

    图  19   微生物加固提升渠基粉土冻融性能的微细观机理

    Figure  19.   Micro-mechanism of improvement of freeze-thaw performance of treated silt

    表  1   试验土料的基本参数

    Table  1   Fundamental properties of soil materials

    相对质量密度 最大干密度/
    (g·cm-3)
    最优含水率/% 液限/
    %
    塑限/
    %
    塑性
    指数
    2.67 1.86 14.2 38.0 19.3 18.7
    下载: 导出CSV

    表  2   培养基具体成分与用量

    Table  2   Specific ingredients and dosages of culture medium

    成分 用量
    蛋白胨 10 g/L
    牛肉浸粉 3 g/L
    NaCl 5 g/L
    去离子水 1000 ml
    pH 8.0~9.0(NAOH溶液)
    注:细菌培养过程中,必要时可加入2%溶液体积的尿素或10 mg/L MnSO4.H2O可促进产胞。
    下载: 导出CSV

    表  3   试验方案

    Table  3   Test scheme

    工况 胶结液浓度/(mol·L-1) 养护龄期/d 冻融循环次数
    未加固 0, 3, 7, 15
    加固 0.5, 0.75, 1.0, 1.25 0, 3, 7, 14, 28 0, 3, 7, 15
    下载: 导出CSV
  • [1] 蔡正银, 朱锐, 黄英豪, 等. 冻融过程对膨胀土渠道边坡劣化模式的影响[J]. 水利学报, 2020, 51(8): 915-923.

    CAI Zhengyin, ZHU Rui, HUANG Yinghao, et al. Influences of freeze-thaw process on the deterioration mode of expansive soil canal slope[J]. Journal of Hydraulic Engineering, 2020, 51(8): 915-923. (in Chinese)

    [2] 邢玮, 朱锐, 张晨, 等. 高寒地区供水渠道水热特征及其长期演化规律[J]. 南京工业大学学报(自然科学版), 2024, 46(1): 93-102. doi: 10.3969/j.issn.1671-7627.2024.01.011

    XING Wei, ZHU Rui, ZHANG Chen, et al. Hydrothermal characteristics and its long-term evolution of canals in cold regions[J]. Journal of Nanjing Tech University (Natural Science Edition), 2024, 46(1): 93-102. (in Chinese) doi: 10.3969/j.issn.1671-7627.2024.01.011

    [3] 汪恩良, 姜海强, 付强, 等. 冻融对饱和渠基土物理力学性质的影响[J]. 农业机械学报, 2018, 49(3): 287-294.

    WANG Enliang, JIANG Haiqiang, FU Qiang, et al. Experiment on effect of freezing and thawing on physical and mechanical properties of saturated channel foundation soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 287-294. (in Chinese)

    [4] 黄英豪, 陈永, 朱洵, 等. 相变材料改良膨胀土冻融性能试验研究及微观机理分析[J]. 岩土工程学报, 2021, 43(11): 1994-2002. doi: 10.11779/CJGE202111005

    HUANG Yinghao, CHEN Yong, ZHU Xun, et al. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. (in Chinese) doi: 10.11779/CJGE202111005

    [5] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008

    HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008

    [6] 刘汉龙, 肖杨. 微生物土力学原理与应用[M]. 北京: 科学出版社, 2022.

    LIU Hanlong, XIAO Yang. Biocemented Soils Mechanical Principles and Applications[M]. Beijing: Science Press, 2022. (in Chinese)

    [7]

    TANG C S, YIN L Y, JIANG N J, et al. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review[J]. Environmental Earth Sciences, 2020, 79(5): 94. doi: 10.1007/s12665-020-8840-9

    [8] 邵光辉, 侯敏, 刘鹏. MICP固化粉土细菌的分布和固定规律研究[J]. 林业工程学报, 2019, 4(1): 128-134.

    SHAO Guanghui, HOU Min, LIU Peng. Distribution and fixation characteristics of microorganism in MICP treated silt column[J]. Journal of Forestry Engineering, 2019, 4(1): 128-134. (in Chinese)

    [9] 刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416.

    LIU Lu, SHEN Yang, LIU Hanlong, et al. Application of bio-cement in erosion control of levees[J]. Rock and Soil Mechanics, 2016, 37(12): 3410-3416. (in Chinese)

    [10]

    GAO Y F, TANG X Y, CHU J, et al. Microbially induced calcite precipitation for seepage control in sandy soil[J]. Geomicrobiology Journal, 2019, 36(4): 366-375. doi: 10.1080/01490451.2018.1556750

    [11]

    JIN G X, XU K, XU C S, et al. Cementation of shale soils by MICP technology and its damage characteristics due to freeze-thaw weathering processes[J]. Journal of Cold Regions Engineering, 2020, 34(4): 04020023. doi: 10.1061/(ASCE)CR.1943-5495.0000229

    [12]

    AHENKORAH I, RAHMAN M M, KARIM M R, et al. Unconfined compressive strength of MICP and EICP treated sands subjected to cycles of wetting-drying, freezing-thawing and elevated temperature: Experimental and EPR modelling[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(5): 1226-1247. doi: 10.1016/j.jrmge.2022.08.007

    [13]

    LIU L, LIU H L, STUEDLEIN A W, et al. Strength, stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(10): 1502-1513. doi: 10.1139/cgj-2018-0007

    [14]

    WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423. doi: 10.1080/01490450701436505

    [15]

    OLIVEIRA P J V, FREITAS L D, CARMONA J P S F. Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement[J]. Journal of Materials in Civil Engineering, 2017, 29(4): 04016263. doi: 10.1061/(ASCE)MT.1943-5533.0001804

    [16] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [17]

    ZHANG W C, JU Y, ZONG Y W, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environmental Science & Technology, 2018, 52(16): 9266-9276.

    [18] 郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学, 2015, 36(5): 1282-1287, 1294.

    ZHENG Yun, MA Wei, BING Hui. Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing[J]. Rock and Soil Mechanics, 2015, 36(5): 1282-1287, 1294. (in Chinese)

图(19)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-14
  • 网络出版日期:  2024-05-19
  • 刊出日期:  2025-01-31

目录

    /

    返回文章
    返回