• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

初始静剪作用下含细粒砂土动力液化特性离散元分析

潘坤, 李佩佩, 曹奕, 吴祁新, 杨仲轩

潘坤, 李佩佩, 曹奕, 吴祁新, 杨仲轩. 初始静剪作用下含细粒砂土动力液化特性离散元分析[J]. 岩土工程学报, 2025, 47(2): 417-427. DOI: 10.11779/CJGE20231008
引用本文: 潘坤, 李佩佩, 曹奕, 吴祁新, 杨仲轩. 初始静剪作用下含细粒砂土动力液化特性离散元分析[J]. 岩土工程学报, 2025, 47(2): 417-427. DOI: 10.11779/CJGE20231008
PAN Kun, LI Peipei, CAO Yi, WU Qixin, YANG Zhongxuan. Cyclic liquefaction behavior of silty sand considering initial static shear effect: a DEM investigation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 417-427. DOI: 10.11779/CJGE20231008
Citation: PAN Kun, LI Peipei, CAO Yi, WU Qixin, YANG Zhongxuan. Cyclic liquefaction behavior of silty sand considering initial static shear effect: a DEM investigation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 417-427. DOI: 10.11779/CJGE20231008

初始静剪作用下含细粒砂土动力液化特性离散元分析  English Version

基金项目: 

国家重点研发计划项目 2023YFB2604200

国家自然科学基金项目 52178362

国家自然科学基金项目 U2239251

国家自然科学基金项目 52208336

浙江省建设厅项目 2022K073

浙江交工协同创新联合研究中心项目 ZDJG2021001

详细信息
    作者简介:

    潘坤(1990—),男,副教授,主要从事土体宏细观特性、海洋土动力学等方面的研究工作。E-mail: pk2018@zjut.edu.cn

    通讯作者:

    杨仲轩, E-mail: zxyang@zju.edu.cn

  • 中图分类号: TU411

Cyclic liquefaction behavior of silty sand considering initial static shear effect: a DEM investigation

  • 摘要: 为研究含细粒砂土液化行为的微观机理,采用颗粒流程序PFC3D模拟了砂土在不排水循环荷载下液化特性,将含有少量细粒的砂土试样与净砂在相同初始状态参数下的循环响应进行了对比,研究了初始静剪和细粒含量对砂土动力液化特性的影响。模拟结果显示,不同静剪应力条件下,含细粒砂土呈现出两种典型的液化破坏模式:循环流动和残余变形累积。当试样表现为循环流动型响应时,配位数逐渐减小至4;而当土体破坏由残余变形累积导致时,配位数变化较小且组构模量始终大于0。相同初始状态和应力条件下,含细粒砂土在循环加载过程中的配位数变化量较净砂大,其抗液化能力也相应较大。此外,随着静剪应力增加,试样的配位数变化量逐渐增大,其抗液化动强度也随之增大。
    Abstract: To gain more insights into the microscopic mechanism of the liquefaction behavior, the particle flow program PFC3D is used to simulate the liquefaction process of silty sands under undrained cyclic loading. The effects of the initial static shear stress and fines content on the cyclic liquefaction behavior of sand are investigated. The simulation responses of silty sand containing a small amount of fines are compared with those of clean sand under the same initial state parameters. The simulated results show that regardless of the fines content, different initial static shear stress conditions can result in two liquefaction failure patterns: cyclic mobility and residual deformation accumulation. Generally, the samples exhibit cyclic mobility accompanied by a decrease in the coordination number. The coordination number of samples under residual deformation accumulation changes slightly, while the fabric norm F is always greater than zero as the cyclic shearing proceeds. Under the identical initial state and stress conditions, the coordination number variation of fine-grained sand during cyclic loading is larger than that of clean sand, and its liquefaction resistance is also larger. Furthermore, a higher initial static shear level leads to a larger change in the coordination number and also an increase in the cyclic liquefaction resistance.
  • 图  1   试样级配曲线

    Figure  1.   Grain-size distribution curves of samples

    图  2   室内试验与离散元模拟试验对比

    Figure  2.   Comparison between laboratory and DEM tests

    图  3   单调荷载下的临界状态线

    Figure  3.   Critical state lines under monotone loading

    图  4   摩擦系数与孔隙比的关系

    Figure  4.   Relationship between friction coefficient and void ratio

    图  5   qmaxqmin相等时应力条件示意图

    Figure  5.   Diagram of stress conditions under equal qmax or qmin

    图  6   等向固结下净砂循环液化响应

    Figure  6.   Cyclic liquefaction response of clean sand under isotropic consolidation

    图  7   等向固结下含细粒砂土循环液化响应(fc = 5%)

    Figure  7.   Cyclic liquefaction responses of silty sand under isotropic consolidation (fc = 5%)

    图  8   等向固结下含细粒砂土循环液化响应(fc = 10%)

    Figure  8.   Cyclic liquefaction responses of silty sand under isotropic consolidation (fc = 10%)

    图  9   不同初始静剪下5%含细粒砂土的应力应变曲线

    Figure  9.   Stress-strain curves of sand with fc = 5% under various initial static shear stresses

    图  10   不同初始静剪下10%含细粒砂土的应力应变曲线

    Figure  10.   Stress-strain curves of sand with fc = 10% under various initial static shear stresses

    图  11   不同SSR下的破坏振次Nf(CSR = 0.25)

    Figure  11.   Number of cycles for failure (Nf) under various SSRs (CSR = 0.25)

    图  12   净砂在3种加载模式下的应力应变曲线(qmax = 350 kPa)

    Figure  12.   Stress-strain curves of clean sand under different loading modes (qmax = 350 kPa)

    图  13   10%含细粒砂在不同加载模式下的应力应变曲线(qmin = -350 kPa)

    Figure  13.   Stress-strain curves of sand with fc = 10% under different loading modes (qmin = -350 kPa)

    图  14   10%含细粒砂在不同加载模式下的配位数演化

    Figure  14.   Evolution of coordination number of sand with fc = 10% under various loading modes

    图  15   循环偏应力比相同时(CSR = 0.25)∆Zm的演化

    Figure  15.   Evolution of ∆Zm (CSR = 0.25)

    图  16   不同应力条件下的∆Zm及循环响应类型总结

    Figure  16.   Summary of cyclic behavior types and ∆Zm under various stress conditions

    图  17   qmax相同时净砂在不同加载模式下组构模量演化

    Figure  17.   Evolution of fabric norm of clean sand under different loading modes and same qmax

    图  18   不同应力条件下的Ff及循环响应类型总结

    Figure  18.   Summary of cyclic behavior types and Ff under various stress conditions

    表  1   数值模拟参数

    Table  1   Parameters for numerical simulation

    颗粒密度ρ /(kg·m-3) 法向刚度kn/(N·m-1) 切向刚度ks/(N·m-1) 颗粒间摩擦系数μ 阻尼比
    β
    2600 105 105 0.5 0.7
    下载: 导出CSV

    表  2   极孔隙比与临界孔隙比汇总

    Table  2   Limit void ratios and critical void ratios of samples

    fc/% emax emin ec Dr/%
    0 0.872 0.557 0.744 48.6
    5 0.826 0.479 0.700 43.5
    10 0.734 0.373 0.610 41.3
    下载: 导出CSV

    表  3   不排水循环三轴模拟方案

    Table  3   Schemes of undrained cyclic triaxial simulation

    qs/
    kPa
    qcyc/
    kPa
    SSR CSR Nf_0 Nf_5 Nf_10 加载模式
    0 250 0 0.25 12 19 31 SR
    50 250 0.05 0.25 13 26 41 SR
    100 250 0.1 0.25 10 30 53 SR
    -50 250 -0.05 0.25 8 21 29 SR
    -100 250 -0.1 0.25 6 16 17 SR
    0 350 0 0.35 2 5 2 SR
    50 300 0.05 0.3 4 14 15 SR
    175 175 0.175 0.175 35 93 201 IR
    200 150 0.2 0.15 57 172 NR
    -50 300 -0.05 0.3 3 9 10 SR
    -175 175 -0.175 0.175 13 42 IR
    -200 150 -0.2 0.15 20 84 NR
    注:Nf_0、Nf_5和Nf_10分别对应细粒含量为0、5%和10%试样的破坏振次;SR为应力翻转模式;IR为中间应力翻转模式;NR为无应力翻转模式。
    下载: 导出CSV
  • [1] 蔡袁强, 于玉贞, 袁晓铭, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2016, 49(5): 9-30.

    CAI Yuanqiang, YU Yuzhen, YUAN Xiaoming, et al. Soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2016, 49(5): 9-30. (in Chinese)

    [2]

    SZE H Y, YANG J. Failure modes of sand in undrained cyclic loading: impact of sample preparation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 152-169. doi: 10.1061/(ASCE)GT.1943-5606.0000971

    [3]

    SIVATHAYALAN S, HA D. Effect of static shear stress on the cyclic resistance of sands in simple shear loading[J]. Canadian Geotechnical Journal, 2011, 48(10): 1471-1484. doi: 10.1139/t11-056

    [4] 冯大阔, 张建民. 初始静剪应力对粗粒土与结构接触面循环力学特性的影响[J]. 岩土力学, 2012, 33(8): 2277-2282, 2290. doi: 10.3969/j.issn.1000-7598.2012.08.007

    FENG Dakuo, ZHANG Jianmin. Influence of initial static shear stress on cycle mechanical behavior of interface between structure and gravelly soil[J]. Rock and Soil Mechanics, 2012, 33(8): 2277-2282, 2290. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.08.007

    [5] 潘坤, 杨仲轩. 不规则动荷载作用下砂土孔压特性试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 79-84. doi: 10.11779/CJGE2017S1016

    PAN Kun, YANG Zhongxuan. Pore pressure characteristics of sand subjected to irregular loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 79-84. (in Chinese) doi: 10.11779/CJGE2017S1016

    [6]

    PAN K, YANG Z X. Effects of initial static shear on cyclic resistance and pore pressure generation of saturated sand[J]. Acta Geotechnica, 2018, 13(2): 473-487.

    [7]

    LEE KENNETH L, BOLTON S H. Dynamic strength of anisotropically consolidated sand[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(5): 169-190. doi: 10.1061/JSFEAQ.0001019

    [8]

    SUAZO G, FOURIE A, DOHERTY J, et al. Effects of confining stress, density and initial static shear stress on the cyclic shear response of fine-grained unclassified tailings[J]. Géotechnique, 2016, 66(5): 401-412. doi: 10.1680/jgeot.15.P.032

    [9] 张晨阳, 谌民, 胡明鉴, 等. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(增刊1): 195-202.

    ZHANG Chenyang, CHEN Min, HU Mingjian, et al. Effect of fine particle composition content on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202. (in Chinese)

    [10] 陈宇龙, 张宇宁. 非塑性细粒对饱和砂土液化特性影响的试验研究[J]. 岩土力学, 2016, 37(2): 507-516.

    CHEN Yulong, ZHANG Yuning. Experimental study of effects of non-plastic fines on liquefaction properties of saturated sand[J]. Rock and Soil Mechanics, 2016, 37(2): 507-516. (in Chinese)

    [11]

    AMINI F, QI G Z. Liquefaction testing of stratified silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(3): 208-217. doi: 10.1061/(ASCE)1090-0241(2000)126:3(208)

    [12]

    ZHOU G Y, PAN K, YANG Z X. Energy-based assessment of cyclic liquefaction behavior of clean and silty sand under sustained initial stress conditions[J]. Soil Dynamics and Earthquake Engineering, 2023, 164: 107609. doi: 10.1016/j.soildyn.2022.107609

    [13]

    PORCINO D D, DIANO V, TOMASELLO G. Effect of non-plastic fines on cyclic shear strength of sand under an initial static shear stress[M]//Springer Series in Geomechanics and Geoengineering. Cham: Springer International Publishing, 2018: 597-601.

    [14] 左康乐, 顾晓强. 不同粒径比下含细颗粒砂土液化特性的试验研究[J]. 岩土工程学报, 2023, 45(7): 1461-1470. doi: 10.11779/CJGE20220401

    ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. (in Chinese) doi: 10.11779/CJGE20220401

    [15]

    ZHANG L, EVANS T M. Investigation of initial static shear stress effects on liquefaction resistance using discrete element method simulations[J]. International Journal of Geomechanics, 2020, 20(7): 04020087. doi: 10.1061/(ASCE)GM.1943-5622.0001720

    [16]

    DAI B B, YANG J, LUO X D. A numerical analysis of the shear behavior of granular soil with fines[J]. Particuology, 2015, 21: 160-172. doi: 10.1016/j.partic.2014.08.010

    [17]

    GONG J, WANG X, LI L, et al. DEM study of the effect of fines content on the small-strain stiffness of gap-graded soils[J]. Computers and Geotechnics, 2019, 112: 35-40. doi: 10.1016/j.compgeo.2019.04.008

    [18] 王涛, 朱俊高, 刘斯宏. 不同细料含量土石混合料塑性行为离散元模拟[J]. 力学学报, 2022, 54(4): 1075-1084.

    WANG Tao, ZHU Jungao, LIU Sihong. DEM simulation on plasticity behavior of soil-rock mixtures with different fine contents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1075-1084. (in Chinese)

    [19]

    ASTM D4767-88. Standard Test Method for Consolidated-Undrained Triaxial Compression Test on Cohesive Soils[S]. 1988.

    [20]

    SHIRE T, O'SULLIVAN C, HANLEY K J, et al. Fabric and effective stress distribution in internally unstable soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014072. doi: 10.1061/(ASCE)GT.1943-5606.0001184

    [21]

    DA CRUZ F, EMAM S, PROCHNOW M, et al. Rheophysics of dense granular materials: discrete simulation of plane shear flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(2): 021309. doi: 10.1103/PhysRevE.72.021309

    [22] 吴越, 杨仲轩, 徐长节. 初始组构各向异性对砂土力学特性及临界状态的影响[J]. 岩土力学, 2016, 37(9): 2569-2576.

    WU Yue, YANG Zhongxuan, XU Changjie. Effects of initial fabric anisotropy on mechanical behavior and critical state of granular soil[J]. Rock and Soil Mechanics, 2016, 37(9): 2569-2576. (in Chinese)

    [23]

    YANG J, WEI L M. Collapse of loose sand with the addition of fines: the role of particle shape[J]. Géotechnique, 2012, 62(12): 1111-1125. doi: 10.1680/geot.11.P.062

    [24]

    BEEN K, JEFFERIES M G. Discussion: a state parameter for sands[J]. Géotechnique, 1986, 36(1): 123-132. doi: 10.1680/geot.1986.36.1.123

    [25] 王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的离散元分析[J]. 岩土力学, 2019, 40(6): 2416-2426.

    WANG Yunjia, SONG Erxiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills[J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426. (in Chinese)

    [26]

    YANG J, SZE H Y. Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions[J]. Géotechnique, 2011, 61(1): 59-73. doi: 10.1680/geot.9.P.019

    [27]

    THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53. doi: 10.1680/geot.2000.50.1.43

    [28]

    SHIRE T, O'SULLIVAN C, HANLEY K J. The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials[J]. Granular Matter, 2016, 18(3): 52. doi: 10.1007/s10035-016-0654-9

    [29]

    ZHOU W, WU W, MA G, et al. Undrained behavior of binary granular mixtures with different fines contents[J]. Powder Technology, 2018, 340: 139-153. doi: 10.1016/j.powtec.2018.09.022

    [30]

    MINH N H, CHENG Y P, THORNTON C. Strong force networks in granular mixtures[J]. Granular Matter, 2014, 16(1): 69-78. doi: 10.1007/s10035-013-0455-3

    [31]

    GONG J, NIE Z H, ZHU Y G, et al. Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM[J]. Computers and Geotechnics, 2019, 106: 161-176. doi: 10.1016/j.compgeo.2018.10.021

图(18)  /  表(3)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  29
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-12
  • 网络出版日期:  2024-07-16
  • 刊出日期:  2025-01-31

目录

    /

    返回文章
    返回