Cyclic liquefaction behavior of silty sand considering initial static shear effect: a DEM investigation
-
摘要: 为研究含细粒砂土液化行为的微观机理,采用颗粒流程序PFC3D模拟了砂土在不排水循环荷载下液化特性,将含有少量细粒的砂土试样与净砂在相同初始状态参数下的循环响应进行了对比,研究了初始静剪和细粒含量对砂土动力液化特性的影响。模拟结果显示,不同静剪应力条件下,含细粒砂土呈现出两种典型的液化破坏模式:循环流动和残余变形累积。当试样表现为循环流动型响应时,配位数逐渐减小至4;而当土体破坏由残余变形累积导致时,配位数变化较小且组构模量始终大于0。相同初始状态和应力条件下,含细粒砂土在循环加载过程中的配位数变化量较净砂大,其抗液化能力也相应较大。此外,随着静剪应力增加,试样的配位数变化量逐渐增大,其抗液化动强度也随之增大。Abstract: To gain more insights into the microscopic mechanism of the liquefaction behavior, the particle flow program PFC3D is used to simulate the liquefaction process of silty sands under undrained cyclic loading. The effects of the initial static shear stress and fines content on the cyclic liquefaction behavior of sand are investigated. The simulation responses of silty sand containing a small amount of fines are compared with those of clean sand under the same initial state parameters. The simulated results show that regardless of the fines content, different initial static shear stress conditions can result in two liquefaction failure patterns: cyclic mobility and residual deformation accumulation. Generally, the samples exhibit cyclic mobility accompanied by a decrease in the coordination number. The coordination number of samples under residual deformation accumulation changes slightly, while the fabric norm F is always greater than zero as the cyclic shearing proceeds. Under the identical initial state and stress conditions, the coordination number variation of fine-grained sand during cyclic loading is larger than that of clean sand, and its liquefaction resistance is also larger. Furthermore, a higher initial static shear level leads to a larger change in the coordination number and also an increase in the cyclic liquefaction resistance.
-
-
表 1 数值模拟参数
Table 1 Parameters for numerical simulation
颗粒密度ρ /(kg·m-3) 法向刚度kn/(N·m-1) 切向刚度ks/(N·m-1) 颗粒间摩擦系数μ 阻尼比
β2600 105 105 0.5 0.7 表 2 极孔隙比与临界孔隙比汇总
Table 2 Limit void ratios and critical void ratios of samples
fc/% emax emin ec Dr/% 0 0.872 0.557 0.744 48.6 5 0.826 0.479 0.700 43.5 10 0.734 0.373 0.610 41.3 表 3 不排水循环三轴模拟方案
Table 3 Schemes of undrained cyclic triaxial simulation
qs/
kPaqcyc/
kPaSSR CSR Nf_0 Nf_5 Nf_10 加载模式 0 250 0 0.25 12 19 31 SR 50 250 0.05 0.25 13 26 41 SR 100 250 0.1 0.25 10 30 53 SR -50 250 -0.05 0.25 8 21 29 SR -100 250 -0.1 0.25 6 16 17 SR 0 350 0 0.35 2 5 2 SR 50 300 0.05 0.3 4 14 15 SR 175 175 0.175 0.175 35 93 201 IR 200 150 0.2 0.15 57 172 — NR -50 300 -0.05 0.3 3 9 10 SR -175 175 -0.175 0.175 13 — 42 IR -200 150 -0.2 0.15 20 — 84 NR 注:Nf_0、Nf_5和Nf_10分别对应细粒含量为0、5%和10%试样的破坏振次;SR为应力翻转模式;IR为中间应力翻转模式;NR为无应力翻转模式。 -
[1] 蔡袁强, 于玉贞, 袁晓铭, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2016, 49(5): 9-30. CAI Yuanqiang, YU Yuzhen, YUAN Xiaoming, et al. Soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2016, 49(5): 9-30. (in Chinese)
[2] SZE H Y, YANG J. Failure modes of sand in undrained cyclic loading: impact of sample preparation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 152-169. doi: 10.1061/(ASCE)GT.1943-5606.0000971
[3] SIVATHAYALAN S, HA D. Effect of static shear stress on the cyclic resistance of sands in simple shear loading[J]. Canadian Geotechnical Journal, 2011, 48(10): 1471-1484. doi: 10.1139/t11-056
[4] 冯大阔, 张建民. 初始静剪应力对粗粒土与结构接触面循环力学特性的影响[J]. 岩土力学, 2012, 33(8): 2277-2282, 2290. doi: 10.3969/j.issn.1000-7598.2012.08.007 FENG Dakuo, ZHANG Jianmin. Influence of initial static shear stress on cycle mechanical behavior of interface between structure and gravelly soil[J]. Rock and Soil Mechanics, 2012, 33(8): 2277-2282, 2290. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.08.007
[5] 潘坤, 杨仲轩. 不规则动荷载作用下砂土孔压特性试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 79-84. doi: 10.11779/CJGE2017S1016 PAN Kun, YANG Zhongxuan. Pore pressure characteristics of sand subjected to irregular loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 79-84. (in Chinese) doi: 10.11779/CJGE2017S1016
[6] PAN K, YANG Z X. Effects of initial static shear on cyclic resistance and pore pressure generation of saturated sand[J]. Acta Geotechnica, 2018, 13(2): 473-487.
[7] LEE KENNETH L, BOLTON S H. Dynamic strength of anisotropically consolidated sand[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(5): 169-190. doi: 10.1061/JSFEAQ.0001019
[8] SUAZO G, FOURIE A, DOHERTY J, et al. Effects of confining stress, density and initial static shear stress on the cyclic shear response of fine-grained unclassified tailings[J]. Géotechnique, 2016, 66(5): 401-412. doi: 10.1680/jgeot.15.P.032
[9] 张晨阳, 谌民, 胡明鉴, 等. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(增刊1): 195-202. ZHANG Chenyang, CHEN Min, HU Mingjian, et al. Effect of fine particle composition content on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202. (in Chinese)
[10] 陈宇龙, 张宇宁. 非塑性细粒对饱和砂土液化特性影响的试验研究[J]. 岩土力学, 2016, 37(2): 507-516. CHEN Yulong, ZHANG Yuning. Experimental study of effects of non-plastic fines on liquefaction properties of saturated sand[J]. Rock and Soil Mechanics, 2016, 37(2): 507-516. (in Chinese)
[11] AMINI F, QI G Z. Liquefaction testing of stratified silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(3): 208-217. doi: 10.1061/(ASCE)1090-0241(2000)126:3(208)
[12] ZHOU G Y, PAN K, YANG Z X. Energy-based assessment of cyclic liquefaction behavior of clean and silty sand under sustained initial stress conditions[J]. Soil Dynamics and Earthquake Engineering, 2023, 164: 107609. doi: 10.1016/j.soildyn.2022.107609
[13] PORCINO D D, DIANO V, TOMASELLO G. Effect of non-plastic fines on cyclic shear strength of sand under an initial static shear stress[M]//Springer Series in Geomechanics and Geoengineering. Cham: Springer International Publishing, 2018: 597-601.
[14] 左康乐, 顾晓强. 不同粒径比下含细颗粒砂土液化特性的试验研究[J]. 岩土工程学报, 2023, 45(7): 1461-1470. doi: 10.11779/CJGE20220401 ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. (in Chinese) doi: 10.11779/CJGE20220401
[15] ZHANG L, EVANS T M. Investigation of initial static shear stress effects on liquefaction resistance using discrete element method simulations[J]. International Journal of Geomechanics, 2020, 20(7): 04020087. doi: 10.1061/(ASCE)GM.1943-5622.0001720
[16] DAI B B, YANG J, LUO X D. A numerical analysis of the shear behavior of granular soil with fines[J]. Particuology, 2015, 21: 160-172. doi: 10.1016/j.partic.2014.08.010
[17] GONG J, WANG X, LI L, et al. DEM study of the effect of fines content on the small-strain stiffness of gap-graded soils[J]. Computers and Geotechnics, 2019, 112: 35-40. doi: 10.1016/j.compgeo.2019.04.008
[18] 王涛, 朱俊高, 刘斯宏. 不同细料含量土石混合料塑性行为离散元模拟[J]. 力学学报, 2022, 54(4): 1075-1084. WANG Tao, ZHU Jungao, LIU Sihong. DEM simulation on plasticity behavior of soil-rock mixtures with different fine contents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1075-1084. (in Chinese)
[19] ASTM D4767-88. Standard Test Method for Consolidated-Undrained Triaxial Compression Test on Cohesive Soils[S]. 1988.
[20] SHIRE T, O'SULLIVAN C, HANLEY K J, et al. Fabric and effective stress distribution in internally unstable soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014072. doi: 10.1061/(ASCE)GT.1943-5606.0001184
[21] DA CRUZ F, EMAM S, PROCHNOW M, et al. Rheophysics of dense granular materials: discrete simulation of plane shear flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(2): 021309. doi: 10.1103/PhysRevE.72.021309
[22] 吴越, 杨仲轩, 徐长节. 初始组构各向异性对砂土力学特性及临界状态的影响[J]. 岩土力学, 2016, 37(9): 2569-2576. WU Yue, YANG Zhongxuan, XU Changjie. Effects of initial fabric anisotropy on mechanical behavior and critical state of granular soil[J]. Rock and Soil Mechanics, 2016, 37(9): 2569-2576. (in Chinese)
[23] YANG J, WEI L M. Collapse of loose sand with the addition of fines: the role of particle shape[J]. Géotechnique, 2012, 62(12): 1111-1125. doi: 10.1680/geot.11.P.062
[24] BEEN K, JEFFERIES M G. Discussion: a state parameter for sands[J]. Géotechnique, 1986, 36(1): 123-132. doi: 10.1680/geot.1986.36.1.123
[25] 王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的离散元分析[J]. 岩土力学, 2019, 40(6): 2416-2426. WANG Yunjia, SONG Erxiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills[J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426. (in Chinese)
[26] YANG J, SZE H Y. Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions[J]. Géotechnique, 2011, 61(1): 59-73. doi: 10.1680/geot.9.P.019
[27] THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53. doi: 10.1680/geot.2000.50.1.43
[28] SHIRE T, O'SULLIVAN C, HANLEY K J. The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials[J]. Granular Matter, 2016, 18(3): 52. doi: 10.1007/s10035-016-0654-9
[29] ZHOU W, WU W, MA G, et al. Undrained behavior of binary granular mixtures with different fines contents[J]. Powder Technology, 2018, 340: 139-153. doi: 10.1016/j.powtec.2018.09.022
[30] MINH N H, CHENG Y P, THORNTON C. Strong force networks in granular mixtures[J]. Granular Matter, 2014, 16(1): 69-78. doi: 10.1007/s10035-013-0455-3
[31] GONG J, NIE Z H, ZHU Y G, et al. Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM[J]. Computers and Geotechnics, 2019, 106: 161-176. doi: 10.1016/j.compgeo.2018.10.021
-
其他相关附件