Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

囊体扩张主动控制桩基水平变形机理分析

黄建友, 闫宇涛, 刁钰, 郑刚, 李凯, 贾建伟, 刘永超

黄建友, 闫宇涛, 刁钰, 郑刚, 李凯, 贾建伟, 刘永超. 囊体扩张主动控制桩基水平变形机理分析[J]. 岩土工程学报, 2025, 47(1): 85-95. DOI: 10.11779/CJGE20230993
引用本文: 黄建友, 闫宇涛, 刁钰, 郑刚, 李凯, 贾建伟, 刘永超. 囊体扩张主动控制桩基水平变形机理分析[J]. 岩土工程学报, 2025, 47(1): 85-95. DOI: 10.11779/CJGE20230993
HUANG Jianyou, YAN Yutao, DIAO Yu, ZHENG Gang, LI Kai, JIA Jianwei, LIU Yongchao. Horizontal deformation of piles controlled by capsule expansion technique[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 85-95. DOI: 10.11779/CJGE20230993
Citation: HUANG Jianyou, YAN Yutao, DIAO Yu, ZHENG Gang, LI Kai, JIA Jianwei, LIU Yongchao. Horizontal deformation of piles controlled by capsule expansion technique[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 85-95. DOI: 10.11779/CJGE20230993

囊体扩张主动控制桩基水平变形机理分析  English Version

基金项目: 

国家重点研发计划项目 2023YFC3009300

国家自然科学基金项目 52178342

详细信息
    作者简介:

    黄建友(1995—),男,博士,主要从事地下结构变形控制方面的研究工作。E-mail: jianyou_huang@163.com

    通讯作者:

    刁钰, E-mail: yudiao@tju.edu.cn

  • 中图分类号: TU470

Horizontal deformation of piles controlled by capsule expansion technique

  • 摘要: 囊体扩张是一种新型地下结构变形主动控制技术,然而其在桩基变形控制机理方面尚未深入研究。采用有限元软件探究了囊体扩张控制桩基水平变形机理,分析了囊体扩张引起桩基和土体变形特性以及囊体-土体-桩体之间相互作用。结果表明:扩张直径0.5 m的囊体对直径为1.2 m的桩可产生最大5.5 mm水平变形,控制效率为60%,囊体扩张对桩基水平变形控制效果良好。囊体扩张会引起邻近土体产生较大的超孔隙水压力,而孔压消散会导致土体压缩而降低桩基控制效率。当扩张距离较小时,桩径对囊体扩张控制效果影响显著。囊体扩张对桩径为0.4~1.6 m的桩均有一定的变形控制效果,尤其适用于小直径桩基的变形控制。随扩张直径的增大,桩基最大水平位移近乎呈线性增大。此外,桩基水平变形随扩张距离增大而减小,但由于扩张对周围孔隙水压力影响范围有限,导致控制效率呈增大趋势。双排囊体扩张控制变形中“遮拦效应”和“反力效应”明显,控制桩基变形应遵循“先远后近,逐排扩张”的原则,以提高控制效果。
    Abstract: The capsule expansion technique (CET) is a new active deformation control technology, but its mechanism of deformation control of pile foundation has not been thoroughly studied. Numerical analysis is performed to explore the control effects of capsule expansion on horizontal deformation of piles. The deformation characteristics of piles and soils and the interaction among the capsules, soils and piles are further analyzed. The results show that the maximum horizontal deformation of 5.5 mm, is induced by the CET with expansion diameter of 0.5 m, and the control efficiency is 60%. The CET leads to a large excess pore water pressure of the adjacent soils. The dissipation of the excess pore water pressure causes the soils to be compressed under the additional stress. When the expansion distance is small, the pile diameter presents a significant impact on the capsule expansion. The expansion has certain deformation control on the piles with a diameter of 0.4~1.6 m, especially suitable for deformation control of small-diameter pile foundations. As the expansion diameter increases, the maximum horizontal displacement of the pile foundation increases almost linearly. In addition, the horizontal displacement of the pile decreases as the expansion distance increases. However, due to the limited influences of expansion on the surrounding pore water pressure, the control efficiency shows an increasing trend. The "blocking effect" and "reaction effect" are obvious in the deformation control of the double-row capsule expansion. The principle of "far first and then near, row by row expansion" should be followed to improve the control effects in controlling deformation of pile foundations.
  • 图  1   现场试验布置图

    Figure  1.   Layout of field tests

    图  2   囊体扩张引起桩基水平变形

    Figure  2.   Lateral deformations of pile induced by CET

    图  3   三维模型及网格划分示意图

    Figure  3.   Schematic diagram of three-dimensional model and meshes

    图  4   数值模拟结果与现场试验结果对比

    Figure  4.   Comparison between numerical and measured results

    图  5   囊体扩张引起邻近土体水平位移

    Figure  5.   Horizontal displacements of adjacent soils induced by expansion

    图  6   囊体扩张引起超孔隙水压力变化

    Figure  6.   Excess pore water pressures caused by capsule expansion

    图  7   桩侧土体法向有效应力

    Figure  7.   Normal effective stresses around pile foundation

    图  8   桩径对囊体扩张控制变形的影响

    Figure  8.   Effects of pile diameter on deformation control by CET

    图  9   扩张直径对囊体扩张控制变形的影响

    Figure  9.   Effects of expansion diameter on deformation control by CET

    图  10   扩张距离对囊体扩张控制变形的影响

    Figure  10.   Effects of expansion distance on deformation control by CET

    图  11   土体性质对囊体扩张控制效果的影响

    Figure  11.   Effects of soil property on deformation control by CET

    图  12   双排囊体扩张引起桩基水平位移

    Figure  12.   Horizontal displacements of pile induced by double-row expansion

    图  13   双排囊体扩张引起邻近土体水平位移

    Figure  13.   Horizontal displacements of adjacent soils induced by double-row expansion

    表  1   土层物理和力学参数

    Table  1   Physical and mechanical parameters of soils

    土层r 层厚/m γ/(kN·m-3) E/MPa μ e0 φ/(°) c/kPa k/(m·d-1)
    1填土 3.3 19.4 4.0 0.40 0.93 16.1 12.4 5.0×10-1
    1粉质黏土 4.3 19.4 5.5 0.37 0.79 19.7 14.0 1.0×10-1
    1粉质黏土 3.5 19.9 5.6 0.36 0.74 18.9 13.4 2.0×10-1
    3粉砂 5.2 19.8 12.5 0.28 0.70 27.6 6.5 8.0×10-1
    ⑦粉质黏土 4.6 20.8 5.9 0.35 0.59 17.5 13.0 5.0×10-3
    1粉质黏土 5.5 20.2 6.4 0.34 0.53 19.3 12.0 2.0×10-3
    2粉质黏土 4.7 19.8 12.7 0.28 0.70 27.7 11.0 5.0×10-3
    1粉质黏土 5.5 20.6 7.7 0.34 0.60 18.4 12.5 3.0×10-3
    1粉质黏土 3.6 20.4 4.6 0.37 0.66 16.5 15.0 5.0×10-4
    2粉砂 6.5 21.1 11.9 0.30 0.55 32.1 6.0 1.3
    1粉质黏土 4.3 19.6 5.9 0.35 0.66 24.2 15.0 5.0×10-4
    2粉砂 5.0 20.3 16.5 0.26 0.62 32.6 5.0 1.2
    4粉砂 4.7 20.0 12.9 0.27 0.59 32.8 6.5 1.3
    1粉质黏土 4.2 19.9 7.3 0.34 0.70 22.3 20.5 4.0×10-4
    1粉质黏土 12.1 19.6 6.6 0.35 0.75 22.0 26.0 3.0×10-4
    下载: 导出CSV
  • [1] 郑刚, 朱合华, 刘新荣, 等. 基坑工程与地下工程安全及环境影响控制[J]. 土木工程学报, 2016, 49(6): 1-24.

    ZHENG Gang, ZHU Hehua, LIU Xinrong, et al. Control of safety of deep excavations and underground engineering and its impact on surrounding environment[J]. China Civil Engineering Journal, 2016, 49(6): 1-24. (in Chinese)

    [2]

    SHAKEEL M, NG C W W. Settlement and load transfer mechanism of a pile group adjacent to a deep excavation in soft clay[J]. Computers and Geotechnics, 2018, 96: 55-72. doi: 10.1016/j.compgeo.2017.10.010

    [3]

    CHEN L T, POULOS H G, LOGANATHAN N. Pile responses caused by tunneling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(3): 207-215. doi: 10.1061/(ASCE)1090-0241(1999)125:3(207)

    [4] 李进军, 王卫东, 邸国恩, 等. 基坑工程对邻近建筑物附加变形影响的分析[J]. 岩土力学, 2007, 28(增刊1): 623-629.

    LI Jinjun, WANG Weidong, DI Guoen, et al. Analysis of the influence of excavation engineering on additional deformation of adjacent buildings[J]. Rock and Soil Mechanics, 2007, 28(S1): 623-629. (in Chinese)

    [5] 魏丽敏, 辛学忠, 何群, 等. 邻近开挖对桥梁桩基变形与内力影响分析[J]. 铁道工程学报, 2017, 34(5): 38-44.

    WEI Limin, XIN Xuezhong, HE Qun, et al. Effect of adjacent excavation on deformation and internal force of bridge pile foundation[J]. Journal of Railway Engineering Society, 2017, 34(5): 38-44. (in Chinese)

    [6]

    BRYSON L S, ZAPATA-MEDINA D G. Method for estimating system stiffness for excavation support walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(9): 1104-1115. doi: 10.1061/(ASCE)GT.1943-5606.0000683

    [7]

    FINNO R J, BRYSON S, CALVELLO M. Performance of a stiff support system in soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(8): 660-671. doi: 10.1061/(ASCE)1090-0241(2002)128:8(660)

    [8]

    WEI G, QI Y J, CHEN C L, et al. Analysis of the protective effect of setting isolation piles outside the foundation pit on the underpass tunnel side[J]. Transportation Geotechnics, 2022, 35: 100791. doi: 10.1016/j.trgeo.2022.100791

    [9]

    WU T H, GAO Y T, ZHOU Y. Application of a novel grouting material for prereinforcement of shield tunnelling adjacent to existing piles in a soft soil area[J]. Tunnelling and Underground Space Technology, 2022, 128: 104646. doi: 10.1016/j.tust.2022.104646

    [10]

    XU Q W, ZHU H H, MA X F, et al. A case history of shield tunnel crossing through group pile foundation of a road bridge with pile underpinning technologies in Shanghai[J]. Tunnelling and Underground Space Technology, 2015, 45: 20-33. doi: 10.1016/j.tust.2014.09.002

    [11]

    IWASAKI Y, WATANABE H, FUKUDA M, et al. Construction control for underpinning piles and their behaviour[J]. Géotechnique, 1994, 44(4): 681-689. doi: 10.1680/geot.1994.44.4.681

    [12] 徐前卫, 朱合华, 马险峰, 等. 地铁盾构隧道穿越桥梁下方群桩基础的托换与除桩技术研究[J]. 岩土工程学报, 2012, 34(7): 1217-1226. http://cge.nhri.cn/article/id/14629

    XU Qianwei, ZHU Hehua, MA Xianfeng, et al. Pile underpinning and removing technology of shield tunnels crossing through group pile foundations of road bridges[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1217-1226. (in Chinese) http://cge.nhri.cn/article/id/14629

    [13] 刘喆, 何平, 张安琪, 等. 盾构隧道施工过程及支护方式对高速铁路高架桥群桩基础影响分析[J]. 工程力学, 2016, 33(S1): 219-226.

    LIU Zhe, HE Ping, ZHANG Anqi, et al. Analysis of effects of shield tunnel construction process and supporting ways on pile groups of high-speed railway viaduct[J]. Engineering Mechanics, 2016, 33(S1): 219-226. (in Chinese)

    [14] 郑刚, 杜一鸣, 刁钰. 隔离桩对基坑外既有隧道变形控制的优化分析[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3499-3509.

    ZHENG Gang, DU Yiming, DIAO Yu. Optimization analysis of efficiency of isolation piles in controlling the deformation of existing tunnels adjacent to deep excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3499-3509. (in Chinese)

    [15] 寇晓强, 杨京方, 叶国良, 等. 盾构近距离穿越群桩旋喷加固效果分析[J]. 铁道工程学报, 2011, 28(11): 98-103.

    KOU Xiaoqiang, YANG Jingfang, YE Guoliang, et al. Study on reinforcement effect of shield tunnel adjacent to existing pile foundation with churning pile[J]. Journal of Railway Engineering Society, 2011, 28(11): 98-103. (in Chinese)

    [16] 郑刚. 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44(1): 1-36. doi: 10.11779/CJGE202201001

    ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. (in Chinese) doi: 10.11779/CJGE202201001

    [17] 郑刚, 苏奕铭, 刁钰, 等. 基坑引起环境变形囊体扩张主动控制试验研究与工程应用[J]. 土木工程学报, 2022, 55(10): 80-92.

    ZHENG Gang, SU Yiming, DIAO Yu, et al. Field tests and application of capsuled expansion for active control of environmental deformation induced by excavation[J]. China Civil Engineering Journal, 2022, 55(10): 80-92. (in Chinese)

    [18]

    ZHENG G, SU Y M, DIAO Y, et al. Field measurements and analysis of real-time capsule grouting to protect existing tunnel adjacent to excavation[J]. Tunnelling and Underground Space Technology, 2022, 122: 104350.

    [19]

    HUANG J Y, DIAO Y, ZHENG G, et al. Horizontal deformation efficiency of a pile controlled by the capsuled expansion technique: a field trial and numerical analysis[J]. International Journal of Geomechanics, 2024, 24(1): 04023262.

    [20]

    ZHENG G, HUANG J Y, DIAO Y, et al. Formulation and performance of slow-setting cement-based grouting paste (SCGP) for capsule grouting technology using orthogonal test[J]. Construction and Building Materials, 2021, 302: 124204.

    [21] 李广信. 静孔隙水压力与超静孔隙水压力: 兼与陈愈炯先生讨论[J]. 岩土工程学报, 2012, 34(5): 957-960. http://cge.nhri.cn/article/id/14591

    LI Guangxin. Static pore water pressure and excess pore water pressure: a discussion with Mr. CHEN Yujiong[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 957-960. (in Chinese) http://cge.nhri.cn/article/id/14591

    [22] 郑刚, 潘军, 程雪松, 等. 基坑开挖引起隧道水平变形的被动与注浆主动控制研究[J]. 岩土工程学报, 2019, 41(7): 1181-1190. doi: 10.11779/CJGE201907001

    ZHENG Gang, PAN Jun, CHENG Xuesong, et al. Passive control and active grouting control of horizontal deformation of tunnels induced neighboring excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1181-1190. (in Chinese) doi: 10.11779/CJGE201907001

    [23] 郭景琢, 郑刚, 赵林嵩, 等. 多排孔注浆引起土体变形与孔压规律试验研究[J]. 岩土力学, 2023, 44(3): 896-907.

    GUO Jingzhuo, ZHENG Gang, ZHAO Linsong, et al. Experimental study of soil deformation and pore pressure caused by multi-row grouting[J]. Rock and Soil Mechanics, 2023, 44(3): 896-907. (in Chinese)

图(13)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 网络出版日期:  2024-04-17
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回