Critical sliding surface theorem and numerical solution method based on lower bound model
-
摘要: 临界滑动面对岩土工程的加固处理有着重要意义。目前对于临界滑动面的研究多采用上限法,基于下限定理或下限模型的临界滑动面理论与数值解法目前尚未见到。在下限模型的基础上,提出了基于下限模型的临界滑动面理论,给出了相应的数值解法;并以黏性土体直立边坡的临界高度问题为例,验证了临界滑动面理论与数值解法的适用性。Abstract: The critical sliding surface is important for the reinforcement of geotechnical engineering in practice. The existing researches on the critical sliding surface are mostly based on the upper bound theorem, while the theorem and numerical solution method for the critical sliding surface based on the lower bound theorem or lower bound model are not available. In this study, the new critical sliding surface solution theorem is proposed based on the lower bound model, and the corresponding numerical solution method is also provided. The accuracy and reliability of the calculated results as well as the rationality and feasibility of its engineering applications are validated through the examples of an upright slope.
-
-
[1] DRUCKER D C, GREENBERG H J, PRAGER W. The safety factor of an elastic-plastic body in plane strain[J]. Journal of Applied Mechanics, 1951, 18(4): 371-378. doi: 10.1115/1.4010353
[2] CHEN W F. Soil mechanics and theorems of limit analysis[J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(2): 493-518. doi: 10.1061/JSFEAQ.0001262
[3] LYSMER J. Limit analysis of plane problems in soil mechanics[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(4): 1311-1334. doi: 10.1061/JSFEAQ.0001441
[4] SLOAN S W. Lower bound limit analysis using finite elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 61-77. doi: 10.1002/nag.1610120105
[5] 汪小刚, 林兴超. 基于刚性块体离散的边坡稳定极限分析法[J]. 岩土工程学报, 2022, 44(9): 1587-1597. doi: 10.11779/CJGE202209003 WANG Xiaogang, LIN Xingchao. Limit analysis method for slope stability based on discretization of rigid blocks[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1587-1597. (in Chinese) doi: 10.11779/CJGE202209003
[6] ZHOU J F, WANG J X. Lower bound limit analysis of wedge stability using block element method[J]. Computers and Geotechnics, 2017, 86: 120-128. doi: 10.1016/j.compgeo.2016.12.031
[7] UKRITCHON B, KEAWSAWASVONG S. Three-dimensional lower bound finite element limit analysis of Hoek-Brown material using semidefinite programming[J]. Computers and Geotechnics, 2018, 104: 248-270. doi: 10.1016/j.compgeo.2018.09.002
[8] NIKOLAOU, K. GEORGIADIS C D. Bisbos, Lower bound limit analysis of 2D steel frames with foundation–structure interaction[J]. Engineering Structures, 2016, 118: 41-54. doi: 10.1016/j.engstruct.2016.03.037
[9] DEUSDADO N, ANTÃO A N, DA SILVA M V, et al. Application of the upper and lower-bound theorems to three-dimensional stability of slopes[J]. Procedia Engineering, 2016, 143: 674-681. doi: 10.1016/j.proeng.2016.06.097
[10] ARAI K, NAKAGAWA M. A new limit equilibrium analysis of slope stability based on lower-bound theorem[J]. Soils and Foundations, 1988, 28(1): 1-15. doi: 10.3208/sandf1972.28.1
[11] ARVIN M R, ASKARI F, FARZANEH O. Seismic behavior of slopes by lower bound dynamic shakedown theory[J]. Computers and Geotechnics, 2012, 39: 107-115. doi: 10.1016/j.compgeo.2011.08.001
[12] SUN R, YANG J S, LIU S H, et al. Undrained stability analysis of dual unlined horseshoe-shaped tunnels in non-homogeneous clays using lower bound limit analysis method[J]. Computers and Geotechnics, 2021, 133: 104057. doi: 10.1016/j.compgeo.2021.104057
[13] UKRITCHON B, KEAWSAWASVONG S. Stability of unlined square tunnels in Hoek-Brown rock masses based on lower bound analysis[J]. Computers and Geotechnics, 2019, 105: 249-264. doi: 10.1016/j.compgeo.2018.10.006
[14] UKRITCHON B, KEAWSAWASVONG S. Lower bound solutions for undrained face stability of plane strain tunnel headings in anisotropic and non-homogeneous clays[J]. Computers and Geotechnics, 2019, 112: 204-217. doi: 10.1016/j.compgeo.2019.04.018
[15] FOROUTAN KALOURAZI A, IZADI A, JAMSHIDI CHENARI R. Seismic bearing capacity of shallow strip foundations in the vicinity of slopes using the lower bound finite element method[J]. Soils and Foundations, 2019, 59(6): 1891-1905. doi: 10.1016/j.sandf.2019.08.014
[16] NIKOLAOU K D, GEORGIADIS K, BISBOS C D. Lower bound limit analysis of 2D steel frames with foundation-structure interaction[J]. Engineering Structures, 2016, 118: 41-54. doi: 10.1016/j.engstruct.2016.03.037
[17] KEAWSAWASVONG S, YOANG S, UKRITCHON B, et al. Lower bound analysis of rectangular footings with interface adhesion factors on nonhomogeneous clays[J]. Computers and Geotechnics, 2022, 147: 104787. doi: 10.1016/j.compgeo.2022.104787
[18] 成德源, 王华民. 确定凸多面体全部顶点和非多余约束的一种算法[J]. 深圳大学学报, 1992, 9(增刊1): 36-40. CHENG Deyuan, WANG Huamin. An algorithm for determining all vertices and non-redundant constraints of convex polyhedron[J]. Journal of Shenzhen University (Science and Engineering), 1992, 9(S1): 36-40. (in Chinese)
[19] 张干宗. 线性规划[M]. 2版. 武汉: 武汉大学出版社, 2004. ZHANG Ganzong. Linear Programming[M]. 2nd ed. Wuhan: Wuhan University Press, 2004. (in Chinese)