• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于下限模型的临界滑动面理论与数值解法

郑颖人, 张金良, 尹德文, 邵颖, 苏凯, 吴昊, 张智沛

郑颖人, 张金良, 尹德文, 邵颖, 苏凯, 吴昊, 张智沛. 基于下限模型的临界滑动面理论与数值解法[J]. 岩土工程学报, 2025, 47(2): 438-442. DOI: 10.11779/CJGE20230988
引用本文: 郑颖人, 张金良, 尹德文, 邵颖, 苏凯, 吴昊, 张智沛. 基于下限模型的临界滑动面理论与数值解法[J]. 岩土工程学报, 2025, 47(2): 438-442. DOI: 10.11779/CJGE20230988
ZHENG Yingren, ZHANG Jinliang, YIN Dewen, SHAO Ying, SU Kai, WU Hao, ZHANG Zhipei. Critical sliding surface theorem and numerical solution method based on lower bound model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 438-442. DOI: 10.11779/CJGE20230988
Citation: ZHENG Yingren, ZHANG Jinliang, YIN Dewen, SHAO Ying, SU Kai, WU Hao, ZHANG Zhipei. Critical sliding surface theorem and numerical solution method based on lower bound model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 438-442. DOI: 10.11779/CJGE20230988

基于下限模型的临界滑动面理论与数值解法  English Version

详细信息
    作者简介:

    郑颖人(1933—),男,教授,博士生导师,中国工程院院士,主要从事岩土力学、岩土工程与地下工程领域的研究工作。E-mail:zhengl32@163.net

  • 中图分类号: TU43

Critical sliding surface theorem and numerical solution method based on lower bound model

  • 摘要: 临界滑动面对岩土工程的加固处理有着重要意义。目前对于临界滑动面的研究多采用上限法,基于下限定理或下限模型的临界滑动面理论与数值解法目前尚未见到。在下限模型的基础上,提出了基于下限模型的临界滑动面理论,给出了相应的数值解法;并以黏性土体直立边坡的临界高度问题为例,验证了临界滑动面理论与数值解法的适用性。
    Abstract: The critical sliding surface is important for the reinforcement of geotechnical engineering in practice. The existing researches on the critical sliding surface are mostly based on the upper bound theorem, while the theorem and numerical solution method for the critical sliding surface based on the lower bound theorem or lower bound model are not available. In this study, the new critical sliding surface solution theorem is proposed based on the lower bound model, and the corresponding numerical solution method is also provided. The accuracy and reliability of the calculated results as well as the rationality and feasibility of its engineering applications are validated through the examples of an upright slope.
  • 图  1   单元边界上x方向的应力分布

    Figure  1.   Stresses along element boundary in x direction

    图  2   单元边界上y方向的应力分布

    Figure  2.   Stress along the element boundary in y direction

    图  3   黏性土体直立边坡的临界高度问题

    Figure  3.   Critical heights of vertical slope in cohesive soil

  • [1]

    DRUCKER D C, GREENBERG H J, PRAGER W. The safety factor of an elastic-plastic body in plane strain[J]. Journal of Applied Mechanics, 1951, 18(4): 371-378. doi: 10.1115/1.4010353

    [2]

    CHEN W F. Soil mechanics and theorems of limit analysis[J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(2): 493-518. doi: 10.1061/JSFEAQ.0001262

    [3]

    LYSMER J. Limit analysis of plane problems in soil mechanics[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(4): 1311-1334. doi: 10.1061/JSFEAQ.0001441

    [4]

    SLOAN S W. Lower bound limit analysis using finite elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 61-77. doi: 10.1002/nag.1610120105

    [5] 汪小刚, 林兴超. 基于刚性块体离散的边坡稳定极限分析法[J]. 岩土工程学报, 2022, 44(9): 1587-1597. doi: 10.11779/CJGE202209003

    WANG Xiaogang, LIN Xingchao. Limit analysis method for slope stability based on discretization of rigid blocks[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1587-1597. (in Chinese) doi: 10.11779/CJGE202209003

    [6]

    ZHOU J F, WANG J X. Lower bound limit analysis of wedge stability using block element method[J]. Computers and Geotechnics, 2017, 86: 120-128. doi: 10.1016/j.compgeo.2016.12.031

    [7]

    UKRITCHON B, KEAWSAWASVONG S. Three-dimensional lower bound finite element limit analysis of Hoek-Brown material using semidefinite programming[J]. Computers and Geotechnics, 2018, 104: 248-270. doi: 10.1016/j.compgeo.2018.09.002

    [8]

    NIKOLAOU, K. GEORGIADIS C D. Bisbos, Lower bound limit analysis of 2D steel frames with foundation–structure interaction[J]. Engineering Structures, 2016, 118: 41-54. doi: 10.1016/j.engstruct.2016.03.037

    [9]

    DEUSDADO N, ANTÃO A N, DA SILVA M V, et al. Application of the upper and lower-bound theorems to three-dimensional stability of slopes[J]. Procedia Engineering, 2016, 143: 674-681. doi: 10.1016/j.proeng.2016.06.097

    [10]

    ARAI K, NAKAGAWA M. A new limit equilibrium analysis of slope stability based on lower-bound theorem[J]. Soils and Foundations, 1988, 28(1): 1-15. doi: 10.3208/sandf1972.28.1

    [11]

    ARVIN M R, ASKARI F, FARZANEH O. Seismic behavior of slopes by lower bound dynamic shakedown theory[J]. Computers and Geotechnics, 2012, 39: 107-115. doi: 10.1016/j.compgeo.2011.08.001

    [12]

    SUN R, YANG J S, LIU S H, et al. Undrained stability analysis of dual unlined horseshoe-shaped tunnels in non-homogeneous clays using lower bound limit analysis method[J]. Computers and Geotechnics, 2021, 133: 104057. doi: 10.1016/j.compgeo.2021.104057

    [13]

    UKRITCHON B, KEAWSAWASVONG S. Stability of unlined square tunnels in Hoek-Brown rock masses based on lower bound analysis[J]. Computers and Geotechnics, 2019, 105: 249-264. doi: 10.1016/j.compgeo.2018.10.006

    [14]

    UKRITCHON B, KEAWSAWASVONG S. Lower bound solutions for undrained face stability of plane strain tunnel headings in anisotropic and non-homogeneous clays[J]. Computers and Geotechnics, 2019, 112: 204-217. doi: 10.1016/j.compgeo.2019.04.018

    [15]

    FOROUTAN KALOURAZI A, IZADI A, JAMSHIDI CHENARI R. Seismic bearing capacity of shallow strip foundations in the vicinity of slopes using the lower bound finite element method[J]. Soils and Foundations, 2019, 59(6): 1891-1905. doi: 10.1016/j.sandf.2019.08.014

    [16]

    NIKOLAOU K D, GEORGIADIS K, BISBOS C D. Lower bound limit analysis of 2D steel frames with foundation-structure interaction[J]. Engineering Structures, 2016, 118: 41-54. doi: 10.1016/j.engstruct.2016.03.037

    [17]

    KEAWSAWASVONG S, YOANG S, UKRITCHON B, et al. Lower bound analysis of rectangular footings with interface adhesion factors on nonhomogeneous clays[J]. Computers and Geotechnics, 2022, 147: 104787. doi: 10.1016/j.compgeo.2022.104787

    [18] 成德源, 王华民. 确定凸多面体全部顶点和非多余约束的一种算法[J]. 深圳大学学报, 1992, 9(增刊1): 36-40.

    CHENG Deyuan, WANG Huamin. An algorithm for determining all vertices and non-redundant constraints of convex polyhedron[J]. Journal of Shenzhen University (Science and Engineering), 1992, 9(S1): 36-40. (in Chinese)

    [19] 张干宗. 线性规划[M]. 2版. 武汉: 武汉大学出版社, 2004.

    ZHANG Ganzong. Linear Programming[M]. 2nd ed. Wuhan: Wuhan University Press, 2004. (in Chinese)

图(3)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  38
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 网络出版日期:  2024-05-10
  • 刊出日期:  2025-01-31

目录

    /

    返回文章
    返回