Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于UH模型的盾构隧道非线性地基反力确定方法

梁发云, 魏圣明, 陈可, 袁强, 闫静雅, 顾晓强

梁发云, 魏圣明, 陈可, 袁强, 闫静雅, 顾晓强. 基于UH模型的盾构隧道非线性地基反力确定方法[J]. 岩土工程学报, 2025, 47(2): 284-295. DOI: 10.11779/CJGE20230919
引用本文: 梁发云, 魏圣明, 陈可, 袁强, 闫静雅, 顾晓强. 基于UH模型的盾构隧道非线性地基反力确定方法[J]. 岩土工程学报, 2025, 47(2): 284-295. DOI: 10.11779/CJGE20230919
LIANG Fayun, WEI Shengming, CHEN Ke, YUAN Qiang, YAN Jingya, GU Xiaoqiang. Method for determining nonlinear foundation reaction of shield tunnels based on the UH model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 284-295. DOI: 10.11779/CJGE20230919
Citation: LIANG Fayun, WEI Shengming, CHEN Ke, YUAN Qiang, YAN Jingya, GU Xiaoqiang. Method for determining nonlinear foundation reaction of shield tunnels based on the UH model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 284-295. DOI: 10.11779/CJGE20230919

基于UH模型的盾构隧道非线性地基反力确定方法  English Version

基金项目: 

上海市优秀技术带头人计划项目 21XD1430900

详细信息
    作者简介:

    梁发云(1976—),男,博士,教授,主要从事土力学与基础工程的教学科研工作。E-mail: fyliang@tongji.edu.cn

  • 中图分类号: TU473

Method for determining nonlinear foundation reaction of shield tunnels based on the UH model

  • 摘要: 为合理反映堆载作用下盾构隧道地基系数的非线性特征,基于UH模型(统一硬化模型)和MSD方法(mobilizable strength design)提出了一种确定隧道非线性地基反力的方法;并以隧道中心处的土体应力-应变曲线描述全土域的力学行为,提出了预测盾构隧道地基反力的实用简化方法;基于上海第④、⑤1层土的UH模型统计参数,将隧道地基反力拟合为双曲线函数形式,进一步将由此获得的初始刚度及极限强度与本构模型参数进行拟合,提出上海地铁盾构隧道的地基反力函数表达式;通过对上海软土盾构隧道堆载工况的多因素分析,验证了该公式对隧道大变形预测问题的实用性。计算结果表明,堆载工况下隧道收敛变形对地基反力曲线的初始刚度要比其极限强度更为敏感,而隧道地基初始刚度主要与土体κ/λ、围压大小等因素相关。
    Abstract: To accurately capture its nonlinear characteristics under surcharge, an approach for the subgrade reaction of shield tunnels is implemented on the basis of the soil strength design method (MSD method) and the unified hardening model (UH model). The practical simplified version is proposed by conducting the description of the mechanical properties of the entire soil zone with constitutive curves of soils at the height of tunnel center. Furthermore, using the statistically derived UH constitutive parameters for soil layers ④ and ⑤1 in Shanghai, the subgrade reactions for both soil layers are predicted and fitted by using the hyperbolic curve function. After the secondary fitting process is conducted to obtain the initial stiffness and the ultimate strength in relation to the parameters of the constitutive model, the functions for subgrade reactions of shield tunnels in Shanghai are established. Eventually, the multifactorial evaluation of shield tunnels in Shanghai under surcharge conditions is performed, confirming the capacity of the developed formulas for predicting the large deformation of tunnels under surcharge. The convergence deformation of the tunnels under surcharge is more sensitive to the initial stiffness of subgrade reactions, governed by various soil parameters such as κ/λ and confining pressure, than to its ultimate strength.
  • 图  1   隧道圆形变形模式

    Figure  1.   Two deformation modes of circular tunnels

    图  2   隧道圆形变形模式地基反力计算曲线

    Figure  2.   Flow chart for calculating subgrade reaction of tunnels under uniformed deformation mode

    图  3   上海黏土不排水三轴试验及模型预测结果

    Figure  3.   Comparison between model predictions and results of undrained triaxial tests for Shanghai soft clay

    图  4   隧道MSD简化方法在隧道圆形变形模式中的精度

    Figure  4.   Precisions of simplified MSD method

    图  5   上海第④、⑤1层土侧限压缩试验

    Figure  5.   Confined compression tests on soil layers ④ and ⑤1 in Shanghai

    图  6   上海第④、⑤1层土侧限固结及回弹系数统计图

    Figure  6.   Statistical chart of the confined compression index or swell index of soil layers ④ and ⑤1 in Shanghai

    图  7   上海第④、⑤1层土摩擦角统计图

    Figure  7.   Statistical chart of effective friction angles of soil layers ④ and ⑤1 in Shanghai

    图  8   上海第④、⑤1层土地基反力随M变化曲线

    Figure  8.   Variation of subgrade reaction with M for soil layers ④ and ⑤1 in Shanghai

    图  9   上海第④、⑤1层土地基反力随OCR变化曲线

    Figure  9.   Variation of subgrade reaction with OCR for soil layers ④ and ⑤1 in Shanghai

    图  10   上海第④、⑤1层土地基反力随κ/λ变化曲线

    Figure  10.   Variation of subgrade reaction with κ/λ for soil layers ④ and ⑤1 in Shanghai

    图  11   上海第④、⑤1层土地基反力随埋深变化曲线

    Figure  11.   Variation of subgrade reaction with depth for soil layers ④ and ⑤1 in Shanghai

    图  12   土体弹簧模量与地基反力初始刚度关系

    Figure  12.   Relationship between elastic modulus of soil and initial stiffness of subgrade reaction

    图  13   κ/λ=0.2时地基极限强度拟合图

    Figure  13.   Fitting and error distribution of ultimate strength of subgrade while κ/λ=0.2

    图  14   κ/λ=0.15时地基极限强度拟合图

    Figure  14.   Fitting and error distribution of ultimate strength of subgrade while κ/λ=0.15

    图  15   MSD法和拟合公式的地基反力对比图

    Figure  15.   Comparison of subgrade reactions by MSD and fitting formulas

    图  16   隧道结构荷载计算法简图

    Figure  16.   Schematic diagram of computational model

    图  17   隧道在第④层土不同埋深条件下的变形

    Figure  17.   Tunnel deformations under different h for soil layer ④

    图  18   隧道在第④层土不同κ/λ下的变形

    Figure  18.   Tunnel deformations under different κ/λ for soil layer ④

    图  19   隧道在第④层土不同M下的变形

    Figure  19.   Tunnel deformations under different M for soil layer ④

    图  20   第④层土隧道不同堆载情况下的变形

    Figure  20.   Tunnel deformations under different surcharges for soil layer ④

    表  1   上海软黏土三轴试验方案

    Table  1   Triaxial test schemes for Shanghai soft clay

    土样编号 取土地点 深度/m 固结压力/kPa 剪切方式
    1 四川北路 20~20.5 102.2 不排水拉伸
    2 四川北路 20~20.5 109.4 不排水压缩
    3 徐家汇 38~38.5 217.5 不排水拉伸
    4 徐家汇 38~38.5 219.5 不排水压缩
    5 张江 41~41.5 219.0 不排水压缩
    6 张江 41~41.5 226.7 不排水拉伸
    下载: 导出CSV

    表  2   上海黏土各场地UH模型参数

    Table  2   Parameters of UH models for Shanghai soft clay under exploration

    取样点 埋深/
    m
    λ κ e0 M OCR
    四川北路 20 0.107 0.016 0.990 1.32 3.0
    徐家汇 38 0.065 0.010 0.860 1.33 2.8
    张江 41 0.040 0.006 0.691 1.19 3.5
    下载: 导出CSV

    表  3   验证MSD简化方法精度的试验方案

    Table  3   Verification schemes for precision of simplified MSD method

    验证分组 λ κ/κλλ e0 ν M OCR
    1 0.09 0.20 1.2 0.3 1.2 1
    2 0.09 0.20 1.2 0.3 1.2 2
    3 0.12 0.20 1.2 0.3 1.2 2
    4 0.09 0.10 1.2 0.3 1.2 2
    下载: 导出CSV

    表  4   上海第④,⑤1层土隧道MSD数值试验表

    Table  4   Schemes for obtaining subgrade reaction of tunnel of soil layers ④ and ⑤1 based on MSD method

    土层标号 试验标号 埋深/
    m
    λ κ/λ e0 ν M OCR
    1 15 0.177 0.15 1.118 0.35 1.2 1
    2 15 0.177 0.20 1.118 0.35 1.2 1
    3 15 0.177 0.25 1.118 0.35 1.2 1
    4 10 0.177 0.20 1.118 0.35 1.2 1
    5 20 0.177 0.20 1.118 0.35 1.2 1
    6 15 0.177 0.20 1.118 0.35 1.2 2
    7 15 0.177 0.20 1.118 0.35 1.2 4
    8 15 0.177 0.20 1.118 0.35 1.1 1
    9 15 0.177 0.20 1.118 0.35 1.3 1
    1 10 25 0.136 0.10 0.959 0.35 1.3 1
    11 25 0.136 0.15 0.959 0.35 1.3 1
    12 25 0.136 0.20 0.959 0.35 1.3 1
    13 20 0.136 0.15 0.959 0.35 1.3 1
    14 30 0.136 0.15 0.959 0.35 1.3 1
    15 25 0.136 0.15 0.959 0.35 1.3 2
    16 25 0.136 0.15 0.959 0.35 1.3 4
    17 25 0.136 0.15 0.959 0.35 1.2 1
    18 25 0.136 0.15 0.959 0.35 1.4 1
    下载: 导出CSV

    表  5   上海第④、⑤1层土隧道地基反力曲线拟合数据表

    Table  5   Summary of fitting parameters for soil layers ④ and ⑤1 in Shanghai

    试验标号 第④层土 试验标号 第⑤1层土
    ζr,0/
    (kPa·m-1)
    pr,lim/kPa ζr,0/
    (kPa·m-1)
    pr,lim/
    kPa
    1 5045.23 86.17 10 13979.34 160.16
    2 3791.89 88.70 11 9743.96 159.74
    3 3012.78 92.35 12 7420.14 162.45
    4 2578.48 54.49 13 7945.51 127.38
    5 4966.76 120.31 14 11503.00 190.71
    6 3678.72 106.62 15 9342.75 188.87
    7 3570.91 136.48 16 8946.58 238.69
    8 3742.71 81.55 17 9572.67 149.07
    9 3828.29 95.81 18 9884.26 170.24
    下载: 导出CSV
  • [1] 邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043. doi: 10.11779/CJGE201606009

    SHAO Hua, HUANG Hongwei, ZHANG Dongming, et al. Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1036-1043. (in Chinese) doi: 10.11779/CJGE201606009

    [2] 王如路, 袁强, 梁发云, 等. 道路填土引发软土地铁盾构隧道变形案例及整治技术[J]. 岩土工程学报, 2023, 45(1): 112-121.

    WANG Rulu, YUAN Qiang, LIANG Fayun, et al. Case study and treatment technology for deformed shield tunnel in soft soils induced by road construction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 112-121. (in Chinese)

    [3] 葛世平, 谢东武, 丁文其. 大面积加卸载对软土地铁隧道的影响[J]. 土木工程学报, 2011, 44(增刊2): 127-130.

    GE Shiping, XIE Dongwu, DING Wenqi. Effects of loading and unloading large-scale area load acting on soft soil metro line[J]. China Civil Engineering Journal, 2011, 44(S2): 127-130. (in Chinese)

    [4] 高广运, 高盟, 杨成斌, 等. 基坑施工对运营地铁隧道的变形影响及控制研究[J]. 岩土工程学报, 2010, 32(3): 453-459. http://cge.nhri.cn/article/id/12402

    GAO Guangyun, GAO Meng, YANG Chengbin, et al. Influence of deep excavation on deformation of operating metro tunnels and countermeasures[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 453-459. (in Chinese) http://cge.nhri.cn/article/id/12402

    [5]

    HUANG H W, ZHANG D M. Resilience analysis of shield tunnel lining under extreme surcharge: characterization and field application[J]. Tunnelling and Underground Space Technology, 2016, 51: 301-312. doi: 10.1016/j.tust.2015.10.044

    [6]

    ZHANG D M, PHOON K K, HU Q F, et al. Nonlinear subgrade reaction solution for circular tunnel lining design based on mobilized strength of undrained clay[J]. Canadian Geotechnical Journal, 2018, 55(2): 155-170. doi: 10.1139/cgj-2017-0006

    [7] 朱合华, 崔茂玉, 杨金松. 盾构衬砌管片的设计模型与荷载分布的研究[J]. 岩土工程学报, 2000, 22(2): 190-194. doi: 10.3321/j.issn:1000-4548.2000.02.009

    ZHU Hehua, CUI Maoyu, YANG Jinsong. Design model for shield lining segments and distribution of load[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 190-194. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.02.009

    [8]

    Japan Society of Civil Engineers. Standard specifications for tunneling-2006: shield tunnels[S]. Japan Society of Civil Engineers, 2007.

    [9] 上海市住房和城乡建设管理委员会. DGJ08-11-2018地基基础设计规范[S]. 上海: 同济大学出版社, 2019.

    Management Committee of Housing and Urban-Rural Development of Shanghai. DGJ08-11-2018 Foundation design code[S]. Shanghai: Tongji University Press, 2019. (in Chinese)

    [10]

    MUIR WOOD A M. The circular tunnel in elastic ground[J]. Géotechnique, 1975, 25(1): 115-127. doi: 10.1680/geot.1975.25.1.115

    [11]

    VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1996, 46(4): 753-756. doi: 10.1680/geot.1996.46.4.753

    [12]

    ZHANG D M, HUANG H W, PHOON K K, et al. A modified solution of radial subgrade modulus for a circular tunnel in elastic ground[J]. Soils and Foundations, 2014, 54(2): 225-232. doi: 10.1016/j.sandf.2014.02.012

    [13]

    SHEN S L, WU H N, CUI Y J, et al. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai[J]. Tunnelling and Underground Space Technology, 2014, 40: 309-323. doi: 10.1016/j.tust.2013.10.013

    [14]

    ORESTE P P. A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports[J]. Tunnelling and Underground Space Technology, 2007, 22(2): 185-205. doi: 10.1016/j.tust.2006.05.002

    [15]

    DO N A, DIAS D, ORESTE P, et al. The behaviour of the segmental tunnel lining studied by the hyperstatic reaction method[J]. European Journal of Environmental and Civil Engineering, 2014: 1-22.

    [16]

    BOLTON M D, POWRIE W. Behaviour of diaphragm walls in clay prior to collapse[J]. Géotechnique, 1988, 38(2): 167-189. doi: 10.1680/geot.1988.38.2.167

    [17]

    OSMAN A S, BOLTON M D, MAIR R J. Predicting 2D ground movements around tunnels in undrained clay[J]. Géotechnique, 2006, 56(9): 597-604. doi: 10.1680/geot.2006.56.9.597

    [18] 张东明, 张艳杰, 黄宏伟. 基于地层损失的盾构隧道土压力非线性解析方法[J]. 中国公路学报, 2017, 30(8): 82-90.

    ZHANG Dongming, ZHANG Yanjie, HUANG Hongwei. Nonlinear analytical solution of earth pressure on shield tunnel linings considering ground volume loss[J]. China Journal of Highway and Transport, 2017, 30(8): 82-90. (in Chinese)

    [19]

    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.

    [20]

    MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95.

    [21] 徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.

    XU Zhonghua. Study on Deformation Behavior of Deep Foundation Pit Combined with Supporting Structure and Main Underground Structure in Shanghai Area[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)

    [22]

    POTTS D M, ZDRAVKOPVIC L. Finite Element Analysis in Geotechnical Engineering: Theory[M]. London: Thomas Telford, 1999.

    [23]

    OSMAN A S, BOLTON M D. A new design method for retaining walls in clay[J]. Canadian Geotechnical Journal, 2004, 41(3): 451-466.

    [24]

    ZHENG G, WANG F J, NIE D Q, et al. Mobilizable strength design for multibench retained excavation[J]. Mathematical Problems in Engineering, 2018, 2018: 8402601.

    [25] 城市轨道设计规范: DG/TJ 08—109—2017[S]. 上海: 同济大学出版社, 2017.

    Urban Rail Transit Design Standard: DG/TJ—08—109—2017[S]. Shanghai: Tongji University Press, 2017. (in Chinese)

    [26] 地铁设计规范: GB 50157—2013[S]. 北京: 中国建筑工业出版社, 2014.

    Code for Design of Metro: GB 50157—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)

    [27] 魏道垛, 杨熙章. 上海软土的静止侧压力系数K0的分布和变化规律的研究[J]. 大坝观测与土工测试, 1988(3): 36-43.

    WEI Daoduo, YANG Xizhang. Variation of K0-values of Shanghai soft soils[J]. Hydropower and Pumped Storage, 1988(3): 36-43. (in Chinese)

    [28] 武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海: 上海交通大学, 2016.

    WU Chaojun. Sedimentary Environment and Physical and Mechanical Properties of Shallow Soil Layers in Shanghai[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)

    [29]

    DO N A, DIAS D, ORESTE P, et al. A new numerical approach to the hyperstatic reaction method for segmental tunnel linings[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(15): 1617-1632.

    [30] 朱合华, 黄伯麒, 李晓军, 等. 盾构衬砌管片接头内力–变形统一模型及试验分析[J]. 岩土工程学报, 2014, 36(12): 2153-2160. doi: 10.11779/CJGE201412001

    ZHU Hehua, HUANG Boqi, LI Xiaojun, et al. Unified model for internal force and deformation of shield segment joints and experimental analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2153-2160. (in Chinese) doi: 10.11779/CJGE201412001

    [31]

    ARNAU O, MOLINS C. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test: Part 2 Numerical simulation[J]. Tunnelling and Underground Space Technology, 2011, 26(6): 778-788.

    [32]

    HUANG H W, ZHANG Y J, ZHANG D M, et al. Field data-based probabilistic assessment on degradation of deformational performance for shield tunnel in soft clay[J]. Tunnelling and Underground Space Technology, 2017, 67: 107-119.

  • 期刊类型引用(8)

    1. 徐善进,卢坤林,梅一帆,贾森林. 基于构造滑动面正应力分布边坡可靠性分析方法研究. 合肥工业大学学报(自然科学版). 2025(03): 418-425+432 . 百度学术
    2. 王喆恺,谭慧明,高志兵. 基于机器学习的厚覆盖土层建筑场地类别评价. 地震学报. 2024(03): 477-489 . 百度学术
    3. 候建琴. 基于强度折减法和随机响应面的边坡变形稳定可靠度分析. 价值工程. 2024(28): 109-112 . 百度学术
    4. 蒋志坚,黄旭东,黄小平,朱珍德. 基于抗滑桩-锚杆组合结构支护下边坡变形机制研究. 山西建筑. 2024(22): 69-73+144 . 百度学术
    5. 宋健,陆朱汐,谢华威,吴凯莉. 地震作用下分层土边坡多滑面变形破坏的数值模拟研究. 地震工程学报. 2023(02): 296-305 . 百度学术
    6. 舒苏荀,张东升,潘天久,钱家骏,陈训龙. 小样本条件下基于Bootstrap方法的边坡非概率可靠度分析. 土木工程与管理学报. 2023(03): 96-103 . 百度学术
    7. 陈昌富,李伟,张嘉睿,廖佳卉,吕晓玺. 山区公路边坡工程智能分析与设计研究进展. 湖南大学学报(自然科学版). 2022(07): 15-31 . 百度学术
    8. 孙志彬,郝状,谭晓慧,杨小礼,姬建. 基于滑动面离散的边坡三维上限分析机构. 岩石力学与工程学报. 2022(09): 1923-1934 . 百度学术

    其他类型引用(6)

图(20)  /  表(5)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  51
  • PDF下载量:  73
  • 被引次数: 14
出版历程
  • 收稿日期:  2023-09-17
  • 网络出版日期:  2024-06-12
  • 刊出日期:  2025-01-31

目录

    /

    返回文章
    返回