Rheological properties and film-forming mechanism of anti-seawater deterioration slurry for slurry shield
-
摘要: 近海或越海泥水盾构隧道建设中,泥浆接触海水后性质劣化难以形成泥膜,极易引起开挖面失稳。提出一种使用亚麻籽胶作为外加剂的抗海水劣化泥浆,基于自主研发的变截面渗透柱研究了亚麻籽胶含量和海水侵入度对累积滤水量及超静孔隙水压力(超静孔压)的影响;获取了泥浆累积粒径分布曲线及流变性质,分析了抗海水劣化泥浆的渗透成膜机制。结果表明,亚麻籽胶能够提高降滤失效果、加快超静孔压消散,促进泥膜形成。随海水侵入度增大,滤水量先减小后增加,泥浆d85先变大后减小,流变性质则逐渐变差。侵入度≤30%时泥浆能够抵抗海水劣化,颗粒堵塞作用是致密泥膜形成的关键;侵入度较高(50%,70%)时泥膜渗透性变差,颗粒堵塞及流变阻塞耦合作用可能是抑制泥浆持续向地层渗透的原因;侵入度为100%时泥浆性质严重劣化,无法形成泥膜。研究成果可为海水环境下泥水盾构施工抗海水劣化泥浆的研发提供可行思路。Abstract: During the construction of offshore and seabed slurry shield tunnels, the properties of slurry contacting with seawater are seriously deteriorated, leading to the failure of filter cake formation and the instability of excavation face. In this study, an anti-seawater deterioration slurry using flaxseed gum as an admixture is proposed. Based on the self-developed variable cross-section infiltration column, the effects of the flaxseed gum content and seawater intrusion degree on the cumulative water filtration and excess pore water pressure are studied, respectively. The cumulative particle size distribution and rheological properties of slurry under different seawater concentrations are obtained. The mechanism of infiltration and filter cake formation of anti-seawater deterioration slurry is analyzed. The results show that the flaxseed gum can improve the effects of fluid loss reduction, accelerate the dissipation of the excess pore pressure, and promote the formation of mud film. With the increase of the seawater intrusion, the fluid loss decreases first and then increases, the d85 of slurry increases first and then decreases, and the rheological properties are gradually deteriorated. When the intrusion degree is less than 30%, the slurry can resist the seawater deterioration, and the particle clogging is the key to the formation of dense filter cake. After the intrusion degree reacheds 50%, the filter cake permeability becomes worse. The coupling effects of the particle clogging and rheological blocking may be the reason for inhibiting the continuous penetration of the slurry into the formation. When the intrusion degree is 100%, the slurry properties are deteriorated seriously, and the filter cake cannot be formed. The research can provide feasible ideas for the research and development on seawater-resistant slurry during the construction of slurry shields under seawater environment.
-
-
表 1 各组泥浆成分Table 1 Slurry composition of each group
单位:% 钠基膨润土 组别 编号 亚麻籽胶 海水水 14 无海水侵入 F0 0 0 F1 0.1 F15 (S0) 0.15 海水侵入 S1 0.15 10 S2 20 S3 30 S5 50 S7 70 S10 100 表 2 试验地层物理参数
Table 2 Physical parameters of test strata
物理参数 地层材料 粒径
范围孔隙率 干密度 渗透
系数地层平均孔径 取值 砂 0.63~1.25 mm 0.40 1.59 g/cm3 4.8×10-4 m/s 51 μm 注:砂经105℃烘干24 h后使用,渗透系数由常水头试验测得。 表 3 泥浆漏斗黏度
Table 3 Funnel viscosities of slurry
组号 海水侵入度/% 漏斗黏度/s S0 0 38.1 S1 10 30.8 S2 20 25.4 S3 30 22.8 S5 50 16.1 S7 70 14.5 S10 100 13.9 表 4 泥浆性质与渗透试验结果之间的关系
Table 4 Relationship between slurry properties and infiltration test results
组号 海水浓度/% 渗透类型 累积滤水量/g d85/μm 流变方程 表观黏度/(mPa·s) 漏斗黏度/s S0 0 Ⅰ 90 221.40 τ=15.94+1.18γ0.56 74.9 38.1 S1 10 Ⅰ 0 256.80 τ=9.19+0.57γ0.58 42.5 30.8 S2 20 Ⅰ 50 240.70 τ=5.56+0.08γ0.79 24.6 25.4 S3 30 Ⅰ 157 130.30 τ=2.13+0.07γ0.82 21.5 22.8 S5 50 Ⅱ 881 59.00 τ=1.45+0.02γ0.95 17.6 16.1 S7 70 Ⅱ 1300 54.13 τ=1.43+0.02γ0.96 17.2 14.5 S10 100 Ⅲ 2010 52.90 τ=1.41+0.02γ0.96 16.8 13.9 注:表观黏度取剪切速率为1000 s-1时的表观黏度。 -
[1] 钟小春, 莫暖娇, 余明学, 等. 盾尾刷环形密封系统单元试验及水密性机制研究[J]. 岩土工程学报, 2023, 45(2): 354-361. doi: 10.11779/CJGE20211464 ZHONG Xiaochun, MO Nuanjiao, YU Mingxue, et al. Unit tests on shield tail brush annular sealing system and its watertightness mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 354-361. (in Chinese) doi: 10.11779/CJGE20211464
[2] 段丽敏, 王建, 侯丽平, 等. 考虑刀盘推力的泥水盾构隧道开挖面平衡机理研究及应用[J]. 岩土工程学报, 2024, 46(7): 1556-1562. doi: 10.11779/CJGE20230324 DUAN Limin, WANG Jian, Hou Liping, et al. Research and application for balance mechanism of excavation surface of slury shield tunnel considering cutterhead thrust[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1556-1562. . (in Chinese) doi: 10.11779/CJGE20230324
[3] 雷华阳, 施福硕, 刘旭, 等. 砂性地层中植物胶改性泥浆性质及渗透成膜试验研究[J]. 岩土工程学报, 2023, 45(2): 394-401. doi: 10.11779/CJGE20211342 LEI Huayang, SHI Fushuo, LIU Xu, et al. Experimental study on properties of vegetable gum-modified mud and filter cake forming in sandy stratum[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 394-401. (in Chinese) doi: 10.11779/CJGE20211342
[4] MAZZIERI F, DI EMIDIO G, PASQUALINI E. Effect of wet-and-dry ageing in seawater on the swelling properties and hydraulic conductivity of two amended bentonites[J]. Applied Clay Science, 2016, 142: 40-51.
[5] 孙金鑫, 钟小春, 付伟, 等. 不同阳离子对泥水盾构泥浆稳定性影响试验研究[J]. 岩土工程学报, 2020, 42(8): 1525-1531. doi: 10.11779/CJGE202008018 SUN Jinxin, ZHONG Xiaochun, FU Wei, et al. Experimental study on effects of different cations on stability of slurry within slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1525-1531. (in Chinese) doi: 10.11779/CJGE202008018
[6] WANG Z R, DING W T, ZHU Z J, et al. Experimental study on rheological behaviors of Na-bentonite slurries under seawater intrusion[J]. Construction and Building Materials, 2022, 357: 129369. doi: 10.1016/j.conbuildmat.2022.129369
[7] MIN F L, DU J R, ZHANG N, et al. Experimental study on property change of slurry and filter cake of slurry shield under seawater intrusion[J]. Tunnelling and Underground Space Technology, 2019, 88: 290-299. doi: 10.1016/j.tust.2019.03.006
[8] QIN S, ZHOU W H, XU T. Effects of seawater on the infiltration behavior of bentonite slurry into sand[J]. Construction and Building Materials, 2023, 371: 130759. doi: 10.1016/j.conbuildmat.2023.130759
[9] 黄小龙. 海底隧道泥水盾构绿色抗盐泥浆配制及其适应性研究[D]. 天津: 天津大学, 2018. HUANG Xiaolong. Study on Preparation and Stratum Adaptation of Green Anti-salt Slurry for Submarine Tunnel[D]. Tianjin: Tianjin University, 2018. (in Chinese)
[10] 杨振兴, 陈健, 孙振川, 等. 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508. YANG Zhenxing, CHEN Jian, SUN Zhenchuan, et al. Experimental study on improved seawater slurry for slurry shield[J]. Rock and Soil Mechanics, 2020, 41(2): 501-508. (in Chinese)
[11] 吴迪, 周顺华, 温馨. 砂性土层泥水盾构泥浆成膜性能试验[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3460-3467. WU Di, ZHOU Shunhua, WEN Xin. Experimental study on film-forming performance of slurry shield in sandy soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3460-3467. (in Chinese)
[12] MIN F L, ZHU W, HAN X R. Filter cake formation for slurry shield tunneling in highly permeable sand[J]. Tunnelling and Underground Space Technology, 2013, 38: 423-430.
[13] 倪红娟, 徐颖, 李岩. 泥水盾构施工中泥膜形成规律数值模拟[J]. 人民黄河, 2013, 35(3): 135-137. NI Hongjuan, XU Ying, LI Yan. Numerical simulation of filter-cake formation law in slurry shield tunnelling[J]. Yellow River, 2013, 35(3): 135-137. (in Chinese)
[14] 徐涛, 史庆锋, 章定文, 等. 泥水盾构开挖面泥膜渗透特性与压力传递机制[J]. 岩土工程学报, 2023, 45(9): 1878-1887. doi: 10.11779/CJGE20220866 XU Tao, SHI Qingfeng, ZHANG Dingwen, et al. Permeability characteristics of filter cake and pressure transfer on face during slurry shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1878-1887. (in Chinese) doi: 10.11779/CJGE20220866
[15] CUI W, LIU D, SONG H F, et al. Experimental study of salt-resisting slurry for undersea shield tunnelling[J]. Tunnelling and Underground Space Technology, 2020, 98: 103322.
[16] KELESSIDIS V C, MAGLIONE R, TSAMANTAKI C, et al. Optimal determination of rheological parameters for Herschel-Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling[J]. Journal of Petroleum Science and Engineering, 2006, 53(3/4): 203-224.
[17] JING Z F, WANG S Z, ZHAI Z D. Effects of slip and rheological parameters on the flow and heat transfer of a Herschel-Bulkley fluid[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2017, 27(4): 981-999.
[18] WANG Z R, GUO W J, DING W T, et al. Hydrodynamic properties of bentonite slurries with Herschel-Bulkley-Papanastasiou rheology: Insights from optimized finite volume method modeling[J]. Powder Technology, 2023, 419: 118375.
-
其他相关附件