• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同温湿路径下压实黏土的土-水和动力响应特性

韩仲, 张琳, 丁鲁强, 邹维列, 冯怀平, 应镇谦

韩仲, 张琳, 丁鲁强, 邹维列, 冯怀平, 应镇谦. 不同温湿路径下压实黏土的土-水和动力响应特性[J]. 岩土工程学报, 2024, 46(12): 2591-2601. DOI: 10.11779/CJGE20230902
引用本文: 韩仲, 张琳, 丁鲁强, 邹维列, 冯怀平, 应镇谦. 不同温湿路径下压实黏土的土-水和动力响应特性[J]. 岩土工程学报, 2024, 46(12): 2591-2601. DOI: 10.11779/CJGE20230902
HAN Zhong, ZHANG Lin, DING Luqiang, ZOU Weilie, FENG Huaiping, YING Zhenqian. Soil-water characteristics and dynamic responses of compacted clay under different moisture and temperature paths[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2591-2601. DOI: 10.11779/CJGE20230902
Citation: HAN Zhong, ZHANG Lin, DING Luqiang, ZOU Weilie, FENG Huaiping, YING Zhenqian. Soil-water characteristics and dynamic responses of compacted clay under different moisture and temperature paths[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2591-2601. DOI: 10.11779/CJGE20230902

不同温湿路径下压实黏土的土-水和动力响应特性  English Version

基金项目: 

国家自然科学基金项目 52378365

国家自然科学基金项目 52308346

中央引导地方科技发展资金项目 236Z5409G

中国博士后科学基金项目 2022M720986

详细信息
    作者简介:

    韩仲(1986—),男,博士,副教授,主要从事非饱和土、道路工程、土工合成材料等方面的研究。E-mail: zhong.han@whu.edu.cn

    通讯作者:

    张琳, E-mail: zhanglin2022@whu.edu.cn

  • 中图分类号: TU43

Soil-water characteristics and dynamic responses of compacted clay under different moisture and temperature paths

  • 摘要: 以黑龙江黏土为研究对象,按照3种不同的路径(干湿—冻融路径、冻融—干湿路径、交叉的干湿冻融路径)施加了温湿作用,对比分析了不同温湿路径下压实黏土的微观结构、土-水特性、累积塑性应变(εp)和回弹模量(MR)的演化规律。结果表明:①温湿作用后土体内宏观孔隙发育,微观孔隙收缩,持水能力降低,脱湿速率增大。多次温湿作用后,经不同温湿路径的试样具有相似的微观孔隙结构及土-水特性;②εpMR在高含水率下对湿度变化(包括含水率w和吸力s)更敏感。冻融循环后,εp对湿度的敏感性显著增加,MR对湿度的敏感性显著降低;③温湿作用后土体的MR-s关系呈现非线性特征,MR-w关系呈现线性特征。长期温湿作用后,不同温湿路径对εpMR的影响差异较小;④基于非饱和土力学原理建立模型,较好地预测了不同温湿路径下MR随湿度的变化规律。
    Abstract: The microstructure, soil-water characteristics, accumulative plastic strain (εp) and resilient modulus (MR) of a compacted Heilongjiang clay are compared. The specimens are imposed with three different moisture (wetting-drying, WD) and temperature (freeze-thaw, FT) paths (i.e., WD-FT, FT-WD and interlaced FTWD histories). The experimental results show that: (1) After moisture-temperature (M-T) actions, the structural pores develop while the textural ones shrink, which leads to reduction in the water retention capacity and increase in the desaturation rate. After M-T effects are stabilized, the microstructure and soil-water characteristics of the specimens with different M-T paths become similar. (2) Under at high moisture content (w), εp and MR are more sensitive to moisture changes (including w and suction s). After FT cycles, εp becomes more sensitive while MR becomes less sensitive to moisture changes. (3) After M-T effects, the MR-s relationships are nonlinear while the MR-w relationships are linear. The different M-T paths do not generate differences in εp and MR when the M-T effects are stabilized. (4) A model based on the mechanics of unsaturated soils is used to rationally predict the variation of MR with w and s for the specimens with different M-T paths.
  • 图  1   路基承载能力随季节的变化规律[6]

    Figure  1.   Seasonal evolution of pavement capacity

    图  2   取土地点及试验用压实土样

    Figure  2.   Location of test soil and compacted specimens

    图  3   试验研究流程

    Figure  3.   Procedures of experimental studies

    图  4   不同的温湿路径

    Figure  4.   Different moisture and temperature paths

    图  5   不同含水率下未冻融试样的曲线

    Figure  5.   (a) CI curves and (b) PSD curves of untreated specimens under various moisture contents

    图  6   不同温湿路径下试样的曲线(w=20.76%)

    Figure  6.   (a) CI curves and (b) PSD curves of specimens under different moisture and temperature paths (w = 20.76%)

    图  7   不同温湿路径下试样的曲线(w=25.04%)

    Figure  7.   (a) CI curves and (b) PSD curves of specimens under different moisture and temperature paths (w = 25.04%)

    图  8   滤纸法所得不同温湿路径下试样的SWCC

    Figure  8.   SWCCs of specimens under different moisture-temperature paths (filter paper method)

    图  9   累积塑性应变随荷载作用次数的发展

    Figure  9.   Development of εp during cyclic loading

    图  10   不同温湿路径下εpaw的变化关系

    Figure  10.   Variation of εpa with w for specimens under different moisture and temperature paths

    图  11   不同温湿路径下εpas的变化关系

    Figure  11.   Variation of εpa with s for specimens under different moisture and temperature paths

    图  12   不同温湿路径下含水率对MRrep的影响

    Figure  12.   Effects of moisture content on MRrep of specimens under different moisture and temperature paths

    图  13   不同温湿路径下所测MR对比

    Figure  13.   Comparisons between values of MR obtained from specimens under different moisture-temperature paths

    图  14   不同温湿路径下MRs的变化关系

    Figure  14.   Variation of MR with s for specimens under different moisture and temperature paths

    表  1   试验用土的基本物理性质指标

    Table  1   Physical index properties of test soil

    Gs wL/% wP/% IP wopt/% ρdmax/
    (kg·m-3)
    2.69 45 23 22 22.76 1610
    注:Gs为相对质量密度,wL为液限,wP为塑限,IP为塑性指数,wopt为最优含水率,ρdmax为最大干密度。
    下载: 导出CSV

    表  2   不同温湿路径下试样的宏、微观孔隙比

    Table  2   Void ratios of structural and textural pores of different moisture and temperature paths

    NFT w / % 路径 eMIP0 esp etp
    0 22.76 初始状态 0.218 0.036 0.182
    0 20.76 脱湿 0.175 0.029 0.146
    0 25.04 增湿 0.225 0.038 0.187
    10 20.76 干湿—冻融 0.185 0.053 0.132
    10 20.76 冻融—干湿 0.200 0.062 0.138
    10 20.76 随机 0.197 0.066 0.131
    10 25.04 干湿—冻融 0.235 0.112 0.123
    10 25.04 冻融—干湿 0.228 0.105 0.123
    10 25.04 随机 0.239 0.113 0.126
    下载: 导出CSV
  • [1]

    BROWN S F. Soil mechanics in pavement engineering[J]. Géotechnique, 1996, 46(3): 383-426. doi: 10.1680/geot.1996.46.3.383

    [2]

    HUANG Y H. Pavement Analysis and Design[M]. 2nd ed. New Jersey: Prentice Hall, 2004.

    [3]

    JONG D T, BOSSCHER P J, BENSON C H. Field assessment of changes in pavement moduli caused by freezing and thawing[J]. Transportation Research Record: Journal of the Transportation Research Board, 1998, 1615(1): 41-48. doi: 10.3141/1615-06

    [4]

    CULLEY RW. Effect of freeze-thaw cycling on stress-strain characteristics and volume change of a till subjected to repetitive loading[J]. Can Geotech J, 1971, 8(3): 359-371. doi: 10.1139/t71-038

    [5]

    WANG T L, LIU Y J, YAN H, et al. An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles[J]. Cold Regions Science and Technology, 2015, 112: 51-65. doi: 10.1016/j.coldregions.2015.01.004

    [6]

    NEWMAN A C D, THOMASSON A J. Rothamsted studies of soil structure Ⅲ: pore size distributions and shrinkage processes[J]. Journal of Soil Science, 1979, 30(3): 415–39. doi: 10.1111/j.1365-2389.1979.tb00998.x

    [7]

    SARTORI G, FERRARI G A, PAGLIAI M. Changes in soil porosity and surface shrinkage in a remolded, saline clay soil treated with compost[J]. Soil Science, 1985, 139(6): 523.

    [8] 张英, 邴慧, 杨成松. 基于SEM和MIP的冻融循环对粉质黏土强度影响机制研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3597-3603.

    ZHANG Ying, BING Hui, YANG Chengsong. Study on the influence mechanism of freeze-thaw cycle on the strength of silty clay based on SEM and MIP[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3597-3603. (in Chinese)

    [9]

    DING L Q, VANAPALLI S, ZOU W, et al. Freeze-thaw and wetting-drying effects on the hydromechanical behavior of a stabilized expansive soil[J]. Construction and Building Materials, 2021, 275: 122162. doi: 10.1016/j.conbuildmat.2020.122162

    [10] 赵贵涛, 韩仲, 邹维列, 等. 干湿、冻融循环对膨胀土土-水及收缩特征的影响[J]. 岩土工程学报, 2021, 43(6): 1139-1146. doi: 10.11779/CJGE202106018

    ZHAO Guitao, HAN Zhong, ZOU Weilie, et al. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. (in Chinese) doi: 10.11779/CJGE202106018

    [11] 万勇, 薛强, 吴彦, 等. 干湿循环作用下压实黏土力学特性与微观机制研究[J]. 岩土力学, 2015, 36(10): 2815-2824.

    WAN Yong, XUE Qiang, WU Yan, et al. Mechanical properties and micromechanisms of compacted clay during drying-wetting cycles[J]. Rock and Soil Mechanics, 2015, 36(10): 2815-2824. (in Chinese)

    [12]

    BURTON G J, PINEDA J, SHENG D, et al. Microstructural changes of an undisturbed, reconstituted and compacted high plasticity clay subjected to wetting and drying[J]. Engineering Geology, 2015, 193: 363-373. doi: 10.1016/j.enggeo.2015.05.010

    [13]

    NG C W W, PANG Y W. Experimental investigations of the soil-water characteristics of a volcanic soil[J]. Canadian Geotechnical Journal, 2000, 37(6): 1252-1264. doi: 10.1139/t00-056

    [14]

    MIAO L C, LIU S Y, LAI Y M. Research of soil–water characteristics and shear strength features of Nanyang expansive soil[J]. Engineering Geology, 2002, 65(4): 261-267. doi: 10.1016/S0013-7952(01)00136-3

    [15]

    YAO Y, LUO S, QIAN J, et al. Soil-water characteristics of the low liquid limit silt considering compaction and freeze-thaw action[J]. Advances in Civil Engineering, 2020, 2020(1): 8823666. doi: 10.1155/2020/8823666

    [16]

    ZHAO G T, ZOU W L, HAN Z, et al. Evolution of soil-water and shrinkage characteristics of an expansive clay during freeze-thaw and drying-wetting cycles[J]. Cold Regions Science and Technology, 2021, 186: 103275. doi: 10.1016/j.coldregions.2021.103275

    [17] 龚壁卫, 吴宏伟, 王斌. 应力状态对膨胀土SWCC的影响研究[J]. 岩土力学, 2004, 25(12): 1915-1918. doi: 10.3969/j.issn.1000-7598.2004.12.010

    GONG Biwei, WU Hongwei, WANG Bin. Study on the influence of stress state on SWCC of expansive soil[J]. Rock and Soil Mechanics, 2004, 25(12): 1915-1918. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.12.010

    [18] 王也, 王建磊, 鲁洋, 等. 南阳膨胀土冻融循环后的土水特征试验研究[J]. 长江科学院院报, 2019, 36(2): 91-96.

    WANG Ye, WANG Jianlei, LU Yang, et al. Experimental research on soil-water characteristics of Nanyang expansive soil subjected to freeze-thaw cycles[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(2): 91-96. (in Chinese)

    [19]

    CHAMBERLAIN E J, GOW A J. Effect of freezing and thawing on the permeability and structure of soils[J]. Developments in Geotechnical Engineering, 1979, 26(C): 73-92.

    [20]

    XU J, LI Y, REN C Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess[J]. Cold Regions Science and Technology, 2021, 181: 103183.

    [21]

    LIU J, ZHANG X, LI L, et al. Resilient behavior of unbound granular materials subjected to a closed-system freeze-thaw cycle[J]. Journal of Cold Regions Engineering, 2018, 32(1): 1–13.

    [22]

    ISHIKAWA T, LIN T S, KAWABATA S, et al. Effect evaluation of freeze-thaw on resilient modulus of unsaturated granular base course material in pavement[J]. Transportation Geotechnics, 2019, 21: 100284. doi: 10.1016/j.trgeo.2019.100284

    [23]

    NG C W W, ZHOU C, YUAN Q, et al. Resilient modulus of unsaturated subgrade soil: experimental and theoretical investigations[J]. Canadian Geotechnical Journal, 2013, 50(2): 223-232. doi: 10.1139/cgj-2012-0052

    [24]

    RAHMAN M S, ERLINGSSON S. Moisture influence on the resilient deformation behaviour of unbound granular materials[J]. International Journal of Pavement Engineering, 2016, 17(9): 763-775. doi: 10.1080/10298436.2015.1019497

    [25]

    LEKARP F, ISACSSON U, DAWSON A. State of the Art. Ⅱ: permanent strain response of unbound aggregates[J]. Journal of Transportation Engineering, 2000, 126(1): 76-83. doi: 10.1061/(ASCE)0733-947X(2000)126:1(76)

    [26]

    LU Z, FANG R, CHEN L H, et al. Long-term deformation of highway subgrade under coupling effect of traffic load and drying-wetting cycles[J]. International Journal of Geomechanics, 2020, 20(2): 04019168. doi: 10.1061/(ASCE)GM.1943-5622.0001568

    [27]

    ZHAO Y F, REN S, JIANG D Y, et al. Influence of wetting-drying cycles on the pore structure and mechanical properties of mudstone from Simian Mountain[J]. Construction and Building Materials, 2018, 191: 923-931. doi: 10.1016/j.conbuildmat.2018.10.069

    [28]

    HAN Z, VANAPALLI SK. Model for predicting resilient modulus of unsaturated subgrade soil using soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2015, 52(10): 1605-1619. doi: 10.1139/cgj-2014-0339

    [29]

    HAN Z, VANAPALLI S K. Relationship between resilient modulus and suction for compacted subgrade soils[J]. Engineering Geology, 2016, 211: 85-97. doi: 10.1016/j.enggeo.2016.06.020

    [30]

    HAN Z, VANAPALLI S K, ZOU W L. Integrated approaches for predicting soil-water characteristic curve and resilient modulus of compacted fine-grained subgrade soils[J]. Canadian Geotechnical Journal, 2017, 54(5): 646-663. doi: 10.1139/cgj-2016-0349

    [31] 公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.

    Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)

    [32]

    HAN Z, ZHAO G, LIN J, et al. Influences of temperature and moisture histories on the hydrostructural characteristics of a clay during desiccation[J]. Engineering Geology, 2022, 297: 106533. doi: 10.1016/j.enggeo.2022.106533

    [33]

    AASHTO, Designation T307—99: Determining the Resilient Modulus of Soils and Aggregate Materials[S]. Washington D C: American Association of State Highway and Transportation Officials, 2015.

    [34] 非饱和土试验方法标准: T/CECS 1337—2023[S]. 北京: 中国建筑工业出版社, 2023.

    Standard for Unsaturated Soil Testing Method: T/CECS 1337—2023[S]. Beijing: China Architecture & Building Press, 2023. (in Chinese)

    [35] 公路路基设计规范: JTG D 30—2004[S]. 北京: 人民交通出版社, 2005.

    Specifications for Design of Highway Subgrades: JTG D 30—2004[S]. Beijing: China Communications Press, 2005. (in Chinese)

    [36]

    BURTON G J, SHENG D, CAMPBELL C. Bimodal pore size distribution of a high-plasticity compacted clay[J]. Géotechnique Letters, 2014, 4(2): 88-93. doi: 10.1680/geolett.14.00003

    [37]

    ZHANG F, CUI Y J, YE W M. Distinguishing macro-and micro-pores for materials with different pore populations[J]. Géotechnique Letters, 2018, 8(2): 102-110. doi: 10.1680/jgele.17.00144

    [38]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[J]. Soil Science Society of America Journal, 1980, 44(5): 892. doi: 10.2136/sssaj1980.03615995004400050002x

    [39]

    WERKMEISTER S, DAWSON A R, WELLNER F. Permanent deformation behavior of granular materials and the shakedown concept[J]. Transportation Research Record, 2001, 1757(1): 75-81. doi: 10.3141/1757-09

图(14)  /  表(2)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  32
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 网络出版日期:  2024-03-24
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回