• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

降水开挖共同作用下地连墙受力变形机制模型试验研究

迟民良, 梁禄钜, 徐长节, 杨开放, 丁智

迟民良, 梁禄钜, 徐长节, 杨开放, 丁智. 降水开挖共同作用下地连墙受力变形机制模型试验研究[J]. 岩土工程学报, 2025, 47(2): 365-375. DOI: 10.11779/CJGE20230889
引用本文: 迟民良, 梁禄钜, 徐长节, 杨开放, 丁智. 降水开挖共同作用下地连墙受力变形机制模型试验研究[J]. 岩土工程学报, 2025, 47(2): 365-375. DOI: 10.11779/CJGE20230889
CHI Minliang, LIANG Luju, XU Changjie, YANG Kaifang, DING Zhi. Model tests on stress and deformation mechanism of diaphragm wall under combined effects of dewatering and excavation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 365-375. DOI: 10.11779/CJGE20230889
Citation: CHI Minliang, LIANG Luju, XU Changjie, YANG Kaifang, DING Zhi. Model tests on stress and deformation mechanism of diaphragm wall under combined effects of dewatering and excavation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 365-375. DOI: 10.11779/CJGE20230889

降水开挖共同作用下地连墙受力变形机制模型试验研究  English Version

基金项目: 

国家自然科学基金项目 52238009

国家自然科学基金-高铁联合基金项目 U1934208

江西省自然科学基金-揭榜挂帅项目 20223BBG71018

详细信息
    作者简介:

    迟民良(1998—),男,博士研究生,主要从事基坑开挖及降水等方面的科研工作。E-mail: mlchi@zju.edu.cn

    通讯作者:

    杨开放, E-mail: yangkf@zju.edu.cn

  • 中图分类号: TU43

Model tests on stress and deformation mechanism of diaphragm wall under combined effects of dewatering and excavation

  • 摘要: 为揭示基坑降水与开挖共同作用下地连墙受力变形机制,开展了室内模型试验模拟基坑干砂开挖与降水开挖过程,采集了地连墙两侧水土压力、坑外地表沉降、地连墙弯矩及侧移等数据。通过对比不同工况条件下地连墙受力变形的变化特点及内在联系,分析了基坑降水开挖对地连墙受力变形的影响机制。试验结果表明:基坑降水与基坑开挖均会改变地连墙两侧侧向土压力分布形式,与干砂开挖相比,降水开挖共同作用时侧向土压力变化更为显著,墙前被动土压力更小,墙后侧向土压力峰值位置则有所下移,地连墙由此产生更大的弯矩值,并诱发更显著的地连墙侧移。
    Abstract: In order to reveal the mechanism of stress and deformation of the diaphragm wall under combined effects of dewatering and excavation, the processes of dry sand excavation and excavation with dewatering are carefully simulated by conducting a series of laboratory model tests, and the data such as pore-water and earth pressures at both sides of the diaphragm wall, settlements outside the pit, bending moments and lateral displacements of the wall are collected. By comparing the characteristics of variations and internal connections of stress and deformation of the diaphragm wall under different conditions, the mechanism of stress and deformation of the diaphragm wall caused by excavation with dewatering is analyzed. The results show that the distribution patterns of lateral earth pressures at both sides of the diaphragm wall will be changed by both dewatering and excavation. The lateral earth pressures change more significantly under the combined effects of dewatering and excavation compared with the case of dry sand excavation, there will be less passive earth pressure zone in front of the diaphragm wall, while the peak positions of lateral earth pressures behind the diaphragm wall will move down. On this occasion, the diaphragm wall will develop greater bending moments and induce more significant lateral displacements.
  • 图  1   基坑平面布置及模拟区

    Figure  1.   Plan view and simulated area of studied foundation pit

    图  2   模型试验装置实物图

    Figure  2.   Physical diagram of model test devices

    图  3   模型试验装置示意图

    Figure  3.   Diagram of model test devices

    图  4   试验土体颗粒级配曲线

    Figure  4.   Grain-size distribution curve of model soil

    图  5   试验土体固结试验结果

    Figure  5.   Consolidation test results of model soil

    图  6   模型试验归一化地表沉降与经验曲线对比

    Figure  6.   Comparison of normalized surface subsidences from model tests and experience curves

    图  7   地连墙侧向土压力计算简图

    Figure  7.   Calculation of lateral earth pressure of diaphragm wall

    图  8   干砂开挖侧向土压力沿深度分布

    Figure  8.   Distribution curves of lateral earth pressure over depth in dry sand excavation

    图  9   干砂开挖侧向土压力之差沿深度分布

    Figure  9.   Distribution curves of difference in lateral earth pressure over depth in dry sand excavation

    图  10   降水开挖侧向土压力变化沿深度分布

    Figure  10.   Distribution curves of lateral earth pressure over depth in excavation with dewatering

    图  11   降水开挖侧向土压力之差沿深度分布

    Figure  11.   Distribution curves of difference in lateral earth pressure over depth in excavation with dewatering

    图  12   降水开挖墙侧孔隙水压力沿深度分布

    Figure  12.   Distribution curves of pore water pressure over depth in excavation with dewatering

    图  13   降水开挖侧向孔隙水压力之差沿深度分布

    Figure  13.   Distribution curves of difference in pore water pressure over depth in excavation with dewatering

    图  14   侧向土压力变化值沿深度分布对比图

    Figure  14.   Comparative diagram of variation of lateral earth pressure over depth

    图  15   侧向土压力之差沿深度分布对比图

    Figure  15.   Comparative diagram of difference in lateral earth pressure over depth

    图  16   地连墙弯矩沿深度分布

    Figure  16.   Distribution curves of bending moment of diaphragm wall over depth

    图  17   地连墙侧移计算简图

    Figure  17.   Calculation of deflection of diaphragm wall

    图  18   地连墙侧移沿深度分布

    Figure  18.   Distribution curves of deflection of diaphragm wall over depth

    表  1   土性参数表

    Table  1   Physical parameters of model soil

    土层 ρ0/(g·cm-3) w0/% Gs e K/(m·d-1) φ/(°) φ/(°) Es/MPa
    砂土 2.01 29.6 2.67 0.72 18.68 22.8 31.6 11.67
    下载: 导出CSV

    表  2   模型试验工况

    Table  2   Programmes of model tests

    工况 开挖深度/cm 降水后水位/cm
    Ⅰ降水开挖 10,20,30,40 -15,-21,-31,-41
    Ⅱ干砂开挖 10,20,30,40
    注:初始地下水位为-15 cm,每层开挖前,将坑内地下水位降至开挖深度以下1 cm处。
    下载: 导出CSV
  • [1] 徐长节, 金飚, 孙凤明, 等. 桩基施工及基坑开挖对邻近建筑物联合影响研究[J]. 岩土工程学报, 2013, 35(增刊2): 809-813. http://cge.nhri.cn/article/id/15496

    XU Changjie, JIN Biao, SUN Fengming, et al. Influence of pile construction and excavation on adjacent buildings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 809-813. (in Chinese) http://cge.nhri.cn/article/id/15496

    [2] 马险峰, 张海华, 朱卫杰, 等. 软土地区超深基坑变形特性离心模型试验研究[J]. 岩土工程学报, 2009, 31(9): 1371-1377. doi: 10.3321/j.issn:1000-4548.2009.09.008

    MA Xianfeng, ZHANG Haihua, ZHU Weijie, et al. Centrifuge model tests on deformation of ultra-deep foundation pits in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1371-1377. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.09.008

    [3] 陈保国, 闫腾飞, 王程鹏, 等. 深基坑地连墙支护体系协调变形规律试验研究[J]. 岩土力学, 2020, 41(10): 3289-3299.

    CHEN Baoguo, YAN Tengfei, WANG Chengpeng, et al. Experimental study on compatible deformation of diaphragm wall support system for deep foundation pit[J]. Rock and Soil Mechanics, 2020, 41(10): 3289-3299. (in Chinese)

    [4]

    FAN X Z, PHOON K K, XU C J, et al. Closed-form solution for excavation-induced ground settlement profile in clay[J]. Computers and Geotechnics, 2021, 137: 104266. doi: 10.1016/j.compgeo.2021.104266

    [5]

    GOH A T C, ZHANG R H, WANG W, et al. Numerical study of the effects of groundwater drawdown on ground settlement for excavation in residual soils[J]. Acta Geotechnica, 2020, 15(5): 1259-1272. doi: 10.1007/s11440-019-00843-5

    [6]

    ZENG C F, WANG S, XUE X L, et al. Characteristics of ground settlement due to combined actions of groundwater drawdown and enclosure wall movement[J]. Acta Geotechnica, 2022, 17(9): 4095-4112. doi: 10.1007/s11440-022-01496-7

    [7] 何绍衡, 夏唐代, 李连祥, 等. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723.

    HE Shaoheng, XIA Tangdai, LI Lianxiang, et al. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(4): 713-723. (in Chinese)

    [8]

    ZENG C F, SONG W W, XUE X L, et al. Construction dewatering in a metro station incorporating buttress retaining wall to limit ground settlement: Insights from experimental modelling[J]. Tunnelling and Underground Space Technology, 2021, 116: 104124. doi: 10.1016/j.tust.2021.104124

    [9]

    XU Y S, YAN X X, SHEN S L, et al. Experimental investigation on the blocking of groundwater seepage from a waterproof curtain during pumped dewatering in an excavation[J]. Hydrogeology Journal, 2019, 27(7): 2659-2672. doi: 10.1007/s10040-019-01992-3

    [10] 曾超峰, 薛秀丽, 宋伟炜, 等. 开挖前降水引发基坑变形机制模型试验研究[J]. 岩土力学, 2020, 41(9): 2963-2972, 2983.

    ZENG Chaofeng, XUE Xiuli, SONG Weiwei, et al. Mechanism of foundation pit deformation caused by dewatering before soil excavation: an experimental study[J]. Rock and Soil Mechanics, 2020, 41(9): 2963-2972, 2983. (in Chinese)

    [11] 曾超峰, 蔡钢, 朱龙, 等. 考虑既有地铁车站阻隔效应的基坑抽水致沉模型试验研究[J]. 岩石力学与工程学报, 2023, 42(10): 2566-2577.

    ZENG Chaofeng, CAI Gang, ZHU Long, et al. Laboratory-scale model test on settlement incurred by foundation pit dewatering considering the barrier effect of pre-existing metro station[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(10): 2566-2577. (in Chinese)

    [12] 曾超峰, 张祖浩, 高文华, 等. 坑外群桩阻隔效应对基坑内抽水引发变形影响机制[J]. 岩土工程学报, 2023, 45(11): 2378-2386. doi: 10.11779/CJGE20220255

    ZENG Chaofeng, ZHANG Zuhao, GAO Wenhua, et al. Barrier effects of surrounding group piles on deformation of foundation pits induced by dewatering[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2378-2386. (in Chinese) doi: 10.11779/CJGE20220255

    [13] 土的工程分类标准: GB/T 50145—2007[S]. 北京: 中国计划出版社, 2008.

    Standard for Engineering Classification of Soil: GB/T 50145—2007[S]. Beijing: China Planning Press, 2008. (in Chinese)

    [14] 建筑地基基础设计规范: GB 50007—2011[S]. 北京: 中国建筑工业出版社, 2012.

    Code for Design of Building Foundation: GB 50007—2011[S]. Beijing: China Architecture and Building Press, 2012. (in Chinese)

    [15] 土工试验方法标准: GB/T 50123—1999[S]. 北京: 中国计划出版社, 1999.

    Standard for soil test method: GB/T 50123—1999[S]. Beijing: China Planning Press, 1999. (in Chinese)

    [16] 范晓真. 非对称开挖内撑式支护受力变形机理及变形控制设计理论[D]. 杭州: 浙江大学, 2021.

    FAN Xiaozhen. Deformation Mechanism and Deformation Control Design Theory of Internal Support in Asymmetric Excavation[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)

    [17] 杨清源, 赵伯明. 潜水层基坑降水引起地表沉降试验与理论研究[J]. 岩石力学与工程学报, 2018, 37(6): 1506-1519.

    YANG Qingyuan, ZHAO Boming. Experimental and theoretical study on the surface subsidence by dewatering of foundation pit in phreatic aquifer[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1506-1519. (in Chinese)

    [18]

    CLOUGH G W, O'ROURKE T D. Construction induced movements of In-Situ wall[C]//Design and Performance of Earth Retaining Structures. New York: 1990.

    [19]

    HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017. doi: 10.1139/t98-056

    [20]

    JAKY J. The coefficient of earth pressure at rest of sands[J]. Soils and Foundations, 1944, 18(22): 355-358. http://www.ideals.illinois.edu/handle/2142/23313

    [21] 丁洲祥. 渗透力概念的力学分析及广义化探讨[J]. 岩土工程学报, 2017, 39(11): 2088-2101. doi: 10.11779/CJGE201711017

    DING Zhouxiang. Mechanical fundamentals of seepage force concept and its generalization[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2088-2101. (in Chinese) doi: 10.11779/CJGE201711017

    [22] 杨清源. 地铁车站深基坑降水引起坑外水位变化及变形研究[D]. 北京: 北京交通大学, 2019.

    YANG Qingyuan. Study on the Change and Deformation of Water Level Outside the Deep Foundation Pit Caused by Dewatering in Subway Station[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)

    [23] 徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.

    XU Zhonghua. Study on Deformation Behavior of Deep Foundation Pit Combined with Supporting Structure and Main Underground Structure in Shanghai Area[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)

图(18)  /  表(2)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  34
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-12
  • 网络出版日期:  2024-06-04
  • 刊出日期:  2025-01-31

目录

    /

    返回文章
    返回