• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

第三系半成岩富水砂岩隧道水平高压旋喷桩加固机理及参数分析

许劲松, 徐华, 张海涛, 王秋懿, 李宝华

许劲松, 徐华, 张海涛, 王秋懿, 李宝华. 第三系半成岩富水砂岩隧道水平高压旋喷桩加固机理及参数分析[J]. 岩土工程学报, 2024, 46(12): 2559-2569. DOI: 10.11779/CJGE20230877
引用本文: 许劲松, 徐华, 张海涛, 王秋懿, 李宝华. 第三系半成岩富水砂岩隧道水平高压旋喷桩加固机理及参数分析[J]. 岩土工程学报, 2024, 46(12): 2559-2569. DOI: 10.11779/CJGE20230877
XU Jinsong, XU Hua, ZHANG Haitao, WANG Qiuyi, LI Baohua. Reinforcement mechanism and parameter analysis of horizontal high-pressure rotary jet grouting piles for tunnels in tertiary semi-diagenetic water-rich sandstone[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2559-2569. DOI: 10.11779/CJGE20230877
Citation: XU Jinsong, XU Hua, ZHANG Haitao, WANG Qiuyi, LI Baohua. Reinforcement mechanism and parameter analysis of horizontal high-pressure rotary jet grouting piles for tunnels in tertiary semi-diagenetic water-rich sandstone[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2559-2569. DOI: 10.11779/CJGE20230877

第三系半成岩富水砂岩隧道水平高压旋喷桩加固机理及参数分析  English Version

基金项目: 

交通运输部重点科技项目 2019-MS1-017

详细信息
    作者简介:

    许劲松(1990—),男,博士研究生,工程师,主要从事公路隧道建设管理方面的工作。E-mail: 503661755@qq.com

    通讯作者:

    徐华, E-mail: xuhua@cdut.edu.cn

  • 中图分类号: TU43

Reinforcement mechanism and parameter analysis of horizontal high-pressure rotary jet grouting piles for tunnels in tertiary semi-diagenetic water-rich sandstone

  • 摘要: 第三系半成岩具备弱胶结、遇水软化等特征,隧道建设时易诱发涌水突泥和坍塌等地下地质灾害。依托云南临清高速公路王家寨隧道,结合现场地质条件与现有工程案例,采用水平高压旋喷桩对软弱围岩进行超前预加固。结合地基梁理论解析、数值模拟与现场监测方法,研究第三系半成岩水平高压旋喷桩加固机理及不同桩体参数对围岩加固效果的影响,并给出桩体参数建议范围,为类似工程提供参考。研究表明:旋喷桩加固后解析解与数值解的剪力与弯矩分布规律较为一致,在开挖未支护段桩体所受弯矩、剪力最大,最易发生断裂破坏;当围岩水压力在300 kPa时旋喷桩体最大拉应力达598.21 kPa,接近桩体极限抗拉强度,水压力小于300 kPa时水平旋喷桩能有效发挥梁、拱协同作用,拱棚效应与阻水效果显著,能将围岩压力传递给桩体后端及拱肩、边墙处,围岩沉降与地下水压得到有效控制,这与现场监测结果基本吻合;桩径、桩长、咬合厚度及搭接长度变化对桩体应力影响较大,影响程度为咬合厚度 > 桩长 > 搭接长度 > 桩径,建议在第三系半成岩富水砂岩隧道围岩水压力小于300 kPa进行超前预加固时,水平旋喷桩桩体参数范围为桩径65~70 cm、桩长10~13 m、咬合厚度25 cm、搭接长度3~4 m。
    Abstract: The tertiary semi-diagenetic rocks are characterized by weak cementation and susceptibility to water softening, which can easily trigger underground geological disasters such as water inrushes, mud outbursts and collapses during tunnel construction. Focusing on the Wangjiazhai tunnel of the Lincan-Qingshuihe Expressway in Yunnan Province, considering the geological conditions and the relevant engineering case studies, the horizontal high-pressure rotary jet grouting piles are employed to pre-emptively strengthen the weak surrounding rock. Through the combination of theoretical analysis of foundation beams, numerical simulation and field monitoring methods, the reinforcement mechanism of horizontal high-pressure jet grouting piles in the tertiary semi-diagenetic formations is investigated, and the influences of varying pile parameters on the reinforcement effectiveness of the surrounding rock are examined, offering a suggested range for these parameters to serve as a reference for similar projects. The results indicate that the distribution of shear force and bending moment in both analytical and numerical solutions agrees with that in the unsupported section, where the pile experiences the highest bending moments and shear forces, making it most susceptible to fracture failure. Under the water pressure of the surrounding rock of 300 kPa, the maximum tensile force within the rotary jet grounting pile reaches 598.21 kPa, close to the ultimate tensile strength of the pile. When the water pressure is below 300 kPa, the horizontal rotary jet pile can effectively give full play of the combined effects of beam and arch, significantly enhancing both the arch action and the water-blocking effects. This allows the pressures on the surrounding rock to be redistributed to the pile rear, the spandrel and the sidewall. The settlement of the surrounding rock and the underground water pressure are effectively controlled, which are consistent with the field monitoring results. The pile diameter, length, occlusion thickness and overlap length significantly affect the pile stress, in the descending order of impact: occlusion thickness, pile length, overlap length and pile diameter. It is recommended that for the pre-reinforcement of tunnels in the tertiary semi-diagenetic water-rich sandstone with the water pressure of the surrounding rock below 300 kPa, the parameters of the horizontal rotary jet grouting pile should be as follows: pile diameter of 65~70 cm, pile length of 10~13m, occlusal thickness of 25 cm, and overlap length of 3~4 m.
  • 图  1   王家寨隧道第三系半成岩地层纵断面图

    Figure  1.   Profile of tertiary semi-diagenetic strata of Wangjiazhai Tunnel

    图  2   王家寨隧道第三系半成岩段灾害情况

    Figure  2.   Disaster situation of tertiary semi-diagenetic section of Wangjiazhai Tunnel

    图  3   水平高压旋喷桩拱棚结构

    Figure  3.   Arch shed structure of horizontal high-pressure rotary jet grouting pile

    图  4   隧道开挖过程旋喷桩力学模型

    Figure  4.   Mechanical model of rotary jet grouting pile during tunnel excavation

    图  5   水平高压旋喷桩模型示意图

    Figure  5.   Schematic diagram of horizontal high-pressure rotary jet grouting pile model

    图  6   解析解与数值解纵向剪力对比

    Figure  6.   Comparison of longitudinal shear force between analytical and numerical solutions

    图  7   解析解与数值解纵向弯矩对比

    Figure  7.   Comparison of longitudinal bending moment between analytical and numerical solutions

    图  8   不同位置旋喷桩轴向应力分布图

    Figure  8.   Distribution of axial stress of rotary jet grouting pile at different positions

    图  9   不同水压力下旋喷桩体最大拉应力分布

    Figure  9.   Distribution of bending stress of rotary jet grouting pile under different water pressures

    图  10   加固前后围岩竖向应力、沉降云图

    Figure  10.   Clouds of vertical stress and settlement of surrounding rock before and after reinforcement

    图  11   围岩-初支接触压力监测元件布置

    Figure  11.   Layout of surrounding rock-initial contact pressure monitoring element

    图  12   ZK22+221监测曲线

    Figure  12.   Monitoring curves of ZK22+221

    图  13   数值模拟与现场检测拱顶沉降与围岩应力对比

    Figure  13.   Comparison between numerical simulation and field detection of arch roof settlement and surrounding rock stress

    图  14   不同桩径加固影响

    Figure  14.   Influences of reinforcement with different pile diameters

    图  15   不同桩长加固影响

    Figure  15.   Reinforcement effects of different pile lengths

    图  16   不同咬合厚度加固影响

    Figure  16.   Effects of different occlusal thicknesseses on reinforcement

    图  17   不同搭接长度加固影响

    Figure  17.   Influences of reinforcement with different lap lengths

    表  1   计算参数

    Table  1   Parameters for calculation

    围岩类型 弹性模量/MPa 泊松比 重度/
    (kN·m-3)
    黏聚力/
    kPa
    内摩擦角/
    (°)
    厚度/
    cm
    基床系数/
    (MPa·m-1)
    半成岩砂岩 16.7 0.30 20.6 27.59 35.2 140
    全风化花岗岩 65.0 0.32 19.1 60.00 25.0 1000
    初支 钢拱架 210000 0.30 78.0
    喷射混凝土 23000 0.20 25.0 29
    旋喷桩体 1000 0.25 24.0
    下载: 导出CSV

    表  2   水平高压旋喷桩参数设计表

    Table  2   Parameter design of horizontal high-pressure rotary jet grouting piles

    桩径/cm 桩长/m 搭接长度/m 咬合厚度/cm
    60 10 1 10
    65 13 2 15
    70 15 3 20
    75 17 4 25
    80 5 30
    下载: 导出CSV
  • [1] 张民庆, 何志军, 肖广智, 等. 第三系富水砂层隧道工程特性与施工技术研究[J]. 铁道工程学报, 2016, 33(9): 76-81. doi: 10.3969/j.issn.1006-2106.2016.09.014

    ZHANG Minqing, HE Zhijun, XIAO Guangzhi, et al. Research on the tunnel engineering characteristics and construction technology of the tertiary water rich sand[J]. Journal of Railway Engineering Society, 2016, 33(9): 76-81. (in Chinese) doi: 10.3969/j.issn.1006-2106.2016.09.014

    [2] 宗泽. 隧道软弱围岩变形控制技术研究[D]. 西安: 长安大学, 2019.

    ZONG Ze. Research on Deformation Control Technology of Weak Surrounding Rock of Tunnel[D]. Xi'an: Changan University, 2019. (in Chinese)

    [3] 苏辉. 蒙华铁路万荣隧道粉细砂地层施工关键技术[J]. 隧道建设(中英文), 2020, 40(增刊2): 225-232.

    SU Hui. Key construction technology of fine sand stratum in Wanrong tunnel of Menghua Railway[J]. Tunnel Construction, 2020, 40(S2): 225-232. (in Chinese)

    [4] 赵晨阳, 曹豪荣, 彭立敏, 等. 隧道双层预支护力学分析模型[J]. 中南大学学报(自然科学版), 2020, 51(1): 145-155.

    ZHAO Chenyang, CAO Haorong, PENG Limin, et al. Mechanical analysis model for double layered pre-support in tunnel[J]. Journal of Central South University (Science and Technology), 2020, 51(1): 145-155. (in Chinese)

    [5] 刘涛, 郑煜茜, 张瑾. 富水砂层新意法隧道稳定性分析与控制对策[J]. 地下空间与工程学报, 2019, 15(增刊2): 825-832.

    LIU Tao, ZHENG Yuxi, ZHANG Jin. Stability analysis and control countermeasures of new method tunnel in water-rich sand layer[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S2): 825-832. (in Chinese)

    [6]

    ZHAO C Y, LEI M F, SHI C H, et al. Function mechanism and analytical method of a double layer pre-support system for tunnel underneath passing a large-scale underground pipe gallery in water-rich sandy strata: a case study[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2021, 115: 104041.

    [7] 孙星亮, 王海珍. 水平旋喷固结体力学性能试验及分析[J]. 岩石力学与工程学报, 2003, 22(10): 1695-1698. doi: 10.3321/j.issn:1000-6915.2003.10.022

    SUN Xingliang, WANG Haizhen. Testing on physical and mechanical properties of horizontal jet-grouted soilcrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10): 1695-1698. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.10.022

    [8]

    ATANGANA NJOCK P G, SHEN J S, MODONI G, et al. Recent advances in horizontal jet grouting (HJG): an overview[J]. Arabian Journal for Science and Engineering, 2018, 43(4): 1543-1560. doi: 10.1007/s13369-017-2752-3

    [9]

    NIKBAKHTAN B, OSANLOO M. Effect of grout pressure and grout flow on soil physical and mechanical properties in jet grouting operations[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 498-505. doi: 10.1016/j.ijrmms.2008.10.005

    [10] 黄瑞, 王柱. 风积沙公路隧道设计施工关键技术探究[J]. 公路, 2015, 60(12): 270-273.

    HUANG Rui, WANG Zhu. Discussion on key technology of design and construction of aeolian sand highway tunnel[J]. Highway, 2015, 60(12): 270-273. (in Chinese)

    [11] 柳建国, 张慧东, 张慧乐, 等. 水平旋喷拱棚新工艺与载荷试验研究[J]. 岩土工程学报, 2011, 33(6): 921-927. http://cge.nhri.cn/article/id/14031

    LIU Jianguo, ZHANG Huidong, ZHANG Huile, et al. New technology and loading tests of horizontal jet grouting arch[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 921-927. (in Chinese) http://cge.nhri.cn/article/id/14031

    [12]

    FLORA A, LIGNOLA G P, MANFREDI G. A semi-probabilistic approach to the design of jet grouted umbrellas in tunnelling[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2007, 11(4): 207-217. doi: 10.1680/grim.2007.11.4.207

    [13]

    PICHLER C, LACKNER R, MARTAK L, et al. Optimization of jet-grouted support in NATM tunnelling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(7/8): 781-796.

    [14]

    LIGNOLA G P, FLORA A, MANFREDI G. Simple method for the design of jet grouted umbrellas in tunneling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(12): 1778-1790. doi: 10.1061/(ASCE)1090-0241(2008)134:12(1778)

    [15]

    ZHANG Z P, FU X D, SHENG Q, et al. Stability of cracking deposit slope considering parameter deterioration subjected to rainfall[J]. International Journal of Geomechanics, 2021, 21(7): 1-19.

    [16] 李世鑫, 孙春辉, 周星宇, 等. 软土地区邻近铁路高压旋喷桩施工室内模型试验研究[J]. 铁道建筑, 2021, 51(7): 95-98.

    LI Shixin, SUN Chunhui, ZHOU Xingyu, et al. Model test research on high-pressure jet-grouting pile construction near railway in soft soil area[J]. Railway Engineering, 2021, 51(7): 95-98. (in Chinese)

    [17] 李洁如, 王宽君, 汪明元, 等. 高压旋喷桩加固沿海滩涂风电场高灵敏软土地基原位试验研究[J]. 太阳能学报, 2021, 42(11): 287-292.

    LI Jieru, WANG Kuanjun, WANG Mingyuan, et al. In-situ behaviour of sensitive clayey ground subjected to high pressure jet grouting for planned offshore wind farm[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 287-292. (in Chinese)

    [18] 陈壮. 隧道浅埋段软弱围岩地表高压旋喷桩加固机理及设计方法[D]. 成都: 西南交通大学, 2021.

    CHEN Zhuang. Strengthening Mechanism and Design Method of Surface High-Pressure Jet Grouting Pile in Soft Surrounding Rock of Shallow Tunnel Section[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)

    [19] 徐华. 隧道围岩高压旋喷地表加固技术与实践[M]. 北京: 人民交通出版社, 2022.

    XU Hua. Technology and Practice of Surface Reinforcement of Tunnel Surrounding Rock by High Pressure Jet Grouting[M]. Beijing: China Communications Press, 2022. (in Chinese)

    [20] 陈昭阳. 富水砂层隧道水平旋喷拱棚力学特性的模型及数值试验研究[D]. 南昌: 华东交通大学, 2022.

    CHEN Zhaoyang. Model and Numerical Experimental Study on Mechanical Characteristics of Horizontal Jet Grouting Arch Shed in Water-Rich Sand Tunnel[D]. Nanchang: East China Jiaotong University, 2022. (in Chinese)

    [21] 曹成威. 基于壳体模型的隧道水平旋喷拱棚预支护力学机制研究[D]. 南昌: 华东交通大学, 2022.

    CAO Chengwei. Study on Mechanical Mechanism of Pre-Support of Horizontal Jet Grouting Arch Shed in Tunnel Based on Shell Model[D]. Nanchang: East China Jiaotong University, 2022. (in Chinese)

    [22] 郑波. 隧道衬砌水压力荷载的实用化计算研究[D]. 北京: 中国铁道科学研究院, 2010.

    ZHENG Bo. Practical Calculation of Water Pressure Load on Tunnel Lining[D]. Beijing: China Academy of Railway Sciences, 2010. (in Chinese)

    [23] 王海涛. 隧道管棚预支护体系的力学机理与开挖面稳定性研究[D]. 大连: 大连理工大学, 2009.

    WANG Haitao. Research on Mechanism of Pipe Roof Reinforcement and Tunnel Face Stability[D]. Dalian: Dalian University of Technology, 2009. (in Chinese)

    [24] 汪珂, 田冲冲, 樊浩博. 水平旋喷桩软弱土层隧道预加固效果分析[J]. 公路, 2015, 60(5): 233-238.

    WANG Ke, TIAN Chongchong, FAN Haobo. Analysis of tunneling sub-horizontal jet-grout columns reinforcement effect in soft soil[J]. Highway, 2015, 60(5): 233-238. (in Chinese)

    [25] 赵乡委. 隧道浅埋段高压旋喷桩法地表加固技术及效果评价方法研究[D]. 成都: 西南交通大学, 2020.

    ZHAO Xiangwei. Study on Surface Reinforcement Technology and Effect Evaluation Method of High Pressure Jet Grouting Pile Method in Shallow Tunnel Section[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)

    [26] 杜文, 王永红, 李利, 等. 双层车站密贴下穿既有隧道案例分析及隧道沉降变形特征[J]. 岩土力学, 2019, 40(7): 2765-2773.

    DU Wen, WANG Yonghong, LI Li, et al. Case study on double-deck subway station undercrossing and analysis of filed monitoring about this case[J]. Rock and Soil Mechanics, 2019, 40(7): 2765-2773. (in Chinese)

    [27] 石钰锋, 张涛, 曹成威, 等. 基于双参数地基的隧道预支护拱棚壳体力学模型[J]. 工程科学与技术, 2023, 55(4): 142-152.

    SHI Yufeng, ZHANG Tao, CAO Chengwei, et al. Mechanical shell model of tunnel arch shed pre-support based on two-parameter foundation[J]. Advanced Engineering Sciences, 2023, 55(4): 142-152. (in Chinese)

    [28] 许晓静, 宋战平, 李辉, 等. 考虑拱效应的隧道管棚力学模型与参数分析[J]. 地下空间与工程学报, 2023, 19(1): 95-106, 132.

    XU Xiaojing, SONG Zhanping, LI Hui, et al. A mechanical model and parameter analysis for pipe-roof considering the arch effect[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(1): 95-106, 132. (in Chinese)

    [29] 石钰锋, 雷金山, 阳军生, 等. 富水软弱地层隧道复合加固机理及参数研究[J]. 铁道科学与工程学报, 2015, 12(3): 596-599.

    SHI Yufeng, LEI Jinshan, YANG Junsheng, et al. Research on composition mechanism and parameters of reinforcement for long-span tunneling weak watery stratum[J]. Journal of Railway Science and Engineering, 2015, 12(3): 596-599. (in Chinese)

图(17)  /  表(2)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  32
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-10
  • 网络出版日期:  2024-04-23
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回