相变黏土单向冻融作用下冻胀特性的试验研究

    王泽帆, 刘东海, 岳雪琴, 杨家琦

    王泽帆, 刘东海, 岳雪琴, 杨家琦. 相变黏土单向冻融作用下冻胀特性的试验研究[J]. 岩土工程学报, 2025, 47(4): 705-714. DOI: 10.11779/CJGE20230837
    引用本文: 王泽帆, 刘东海, 岳雪琴, 杨家琦. 相变黏土单向冻融作用下冻胀特性的试验研究[J]. 岩土工程学报, 2025, 47(4): 705-714. DOI: 10.11779/CJGE20230837
    WANG Zefan, LIU Donghai, YUE Xueqin, YANG Jiaqi. Experimental study on frost heave characteristics of PCM-clay under one-dimensional freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 705-714. DOI: 10.11779/CJGE20230837
    Citation: WANG Zefan, LIU Donghai, YUE Xueqin, YANG Jiaqi. Experimental study on frost heave characteristics of PCM-clay under one-dimensional freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 705-714. DOI: 10.11779/CJGE20230837

    相变黏土单向冻融作用下冻胀特性的试验研究  English Version

    基金项目: 

    国家自然科学基金面上项目 5227090128

    详细信息
      作者简介:

      王泽帆(1998—),男,硕士研究生,主要从事筑坝新材料及水工岩土研究。E-mail: 2648656800@qq.com

      通讯作者:

      刘东海, E-mail: liudh@tju.edu.cn

    • 中图分类号: TU41

    Experimental study on frost heave characteristics of PCM-clay under one-dimensional freeze-thaw

    • 摘要: 掺混相变材料(PCM)的相变黏土以其防冻控温的特性,使黏土心墙、渠道、坝堤、道路等场景下的负温施工成为了可能。针对冬季施工现场日循环冻融作用的环境特点,在室内模拟开展封闭系统、分段控温、浅冻结条件下的单向冻融试验,研究相变黏土冻胀特性及在冻融循环作用下冻胀发育规律及机理。结果表明:相变黏土的冻胀特性较不掺混PCM的黏土(素土)得到了改良,经历冻融循环后,相变黏土的最终冻胀量远小于相同冻融循环次数下的素土试样,且土料的冻结锋面下移速率及水分迁移程度降低;多次冻融循环后,素土的冷生构造产生了更为显著的发育,而相变黏土未表现出明显的冻胀敏感性,冷生构造的形成和发育都非常缓慢。分析认为,初始饱和度较低、孔隙较大以及PCM的高潜热储能、冻缩性、阻水性等是使相变黏土冻胀特性得到改良的主要原因。研究可为相变黏土作为潜在大坝心墙、渠道、坝堤、道路的建设材料提供寒区冬季施工防冻提供了理论依据。
      Abstract: The clay incorporated with phase change material (PCM-clay) has the characteristics of freezing resistance and temperature control, which makes it possible to construct clay core walls, channels, embankments, roads and other scenarios with negative temperature. According to the environmental characteristics of daily cyclic freeze-thaw effects on the construction site in winter, a series of repeated one-dimensional freeze-thaw experiments under closed system, step thermoregulation and shallow freezing conditions in a closed system are simulated indoors to study the frost heave characteristics of the PCM-clay and the law and mechanism of frost heaving development under the action of freeze thaw cycles. The results show that the frost heave characteristics of the PCM-clay is improved compared with that of the clay without PCM (pure clay). After freeze-thaw cycles, the final frost heaving amount of the PCM-clay is far less than that of the pure clay under the same freeze-thaw cycles. The downward moving rate of soil freezing front and the degree of moisture migration also decrease. After several freeze-thaw cycles, the cryogenic structure of the pure soil has developed more significantly, while the PCM-clay does not exhibit obvious frost heave sensitivity, and the formation and development of cryogenic structure are very slow. The analysis shows that the low water content, large porosity, high latent heat energy storage, freezing shrinkage and hydrophobicity of the PCM are the main reasons for improving the frost heave characteristics of the PCM-clay. This study can provide a theoretical basis for the PCM-clay as a construction material for potential dam core walls, channels, embankments, and roads to provide winter construction frost protection in cold regions.
    • 图  1   素土与相变黏土

      Figure  1.   Pure clay and PCM-clay

      图  2   冻胀试验系统

      Figure  2.   Frost heave test system

      图  3   第1次冻结过程中素土和相变黏土温度分布情况

      Figure  3.   Temperature distribution of pure clay and PCM-clay during 1st freezing

      图  4   第2次冻结过程中素土和相变黏土温度分布情况

      Figure  4.   Temperature distribution of pure clay and PCM-clay during 2nd freezing

      图  5   第4次冻结过程中素土和相变黏土温度分布情况

      Figure  5.   Temperature distribution of pure clay and PCM-clay during 4th freezing

      图  6   冻结后素土与相变黏土冻结锋面与5℃等温线分布情况

      Figure  6.   Distribution of freezing front and 5℃ isotherm of pure clay and PCM-clay after freezing

      图  7   素土经历冻融循环后的冷生构造发育

      Figure  7.   Cryostructure development of pure clay after freeze-thaw cycles

      图  8   相变黏土经历冻融循环的冷生构造发育

      Figure  8.   Cryostructure development of PCM-clay after freeze-thaw cycles

      图  9   素土与相变黏土冻融循环后冷生构造发育比较

      Figure  9.   Comparison of cryostructure development of pure clay and PCM-clay after freeze-thaw cycles

      图  10   土体经历冻融前后的液体分布情况

      Figure  10.   Liquid distribution before and after clay experiencing freezing and thawing

      图  11   素土第1次冻融循环冻胀量变化

      Figure  11.   Variation of frost heave of pure clay after 1st freeze-thaw cycle

      图  12   相变黏土第1次冻融循环冻胀量变化

      Figure  12.   Variation of frost heave of PCM-clay after 1st freeze-thaw cycle

      图  13   相变黏土10~1℃位移变化

      Figure  13.   Variation of displacement of PCM-clay during 10℃ and 1℃

      图  14   素土和相变黏土的表层冰膜

      Figure  14.   Superficial ice film of pure clay and PCM-clay

      图  15   相变黏土的“融胀”曲线

      Figure  15.   Thaw heave curves of PCM-clay

      图  16   相变黏土和素土经历冻融循环后的累计冻胀曲线

      Figure  16.   Cumulative frost heave curves of pure clay and PCM-clay after freeze-thaw cycles

      表  1   不同PCM掺量相变黏土(25℃)材料特性

      Table  1   Material properties of samples with different PCM contents(25℃)

      PCM/% 最优含水率/% 最大干密度/(g·cm-3) 压缩模量/MPa 渗透系数/(10-7 cm·s-1) 无侧限抗压强度/kPa
      0 15.15 1.84 13.79 27.4 229.4
      4 12.70 1.82 10.00 2.18 265.4
      8 9.67 1.74 5.41 2.94 227.7
      12 4.44 1.69 4.42 3.94 152.8
      下载: 导出CSV

      表  2   2 cm深度土体降温至5℃耗时

      Table  2   Time consumption to cool down soil to 5℃ at depth of 2 cm (单位: h)

      项目 相变黏土 素土
      第2次降温 1.43 0.75
      第3次降温 1.26 0.85
      第4次降温 1.48 0.82
      平均耗时 1.39 0.81
      下载: 导出CSV
    • [1] 穆彦虎, 马巍, 李国玉, 等. 冻融作用对压实黄土结构影响的微观定量研究[J]. 岩土工程学报, 2011, 33(12): 1919-1925. http://cge.nhri.cn/cn/article/id/14448

      MU Yanhu, MA Wei, LI Guoyu, et al. Quantitative analysis of impacts of freeze-thaw cycles upon microstructure of compacted loess[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1919-1925. (in Chinese) http://cge.nhri.cn/cn/article/id/14448

      [2] 郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学, 2015, 36(5): 1282-1287, 1294.

      ZHENG Yun, MA Wei, BING Hui. Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing[J]. Rock and Soil Mechanics, 2015, 36(5): 1282-1287, 1294. (in Chinese)

      [3] 鲁洋, 刘斯宏, 张勇敢, 等. 土石坝心墙掺砾土的渗透特性冻融演化规律试验研究[J]. 水利学报, 2021, 52(5): 603-611.

      LU Yang, LIU Sihong, ZHANG Yonggan, et al. Experimental study on permeability characteristicsof clay-gravel mixtures under freezing-thawing actions in core wall of earth-rock dams[J]. Journal of Hydraulic Engineering, 2021, 52(5): 603-611. (in Chinese)

      [4] 崔宏环, 秦晓鹏, 王文涛, 等. 冻融条件下非饱和路基土的强度及微观特性研究[J]. 冰川冻土, 2019, 41(5): 1115-1121.

      CUI Honghuan, QIN Xiaopeng, WANG Wentao, et al. Study on the strength and microscopic characteristics of unsaturated subgrade soil under freezing-thawing conditions[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1115-1121. (in Chinese)

      [5] 周永毅, 张建经. 一种新型冻土可视化试验系统及其在冻融试验中的应用[J]. 岩石力学与工程学报, 2020, 39(8): 1671-1681.

      ZHOU Yongyi, ZHANG Jianjing. A novel visualization apparatus for freezing soils and its application in freezing-thawing test[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1671-1681. (in Chinese)

      [6] 王永涛, 王大雁, 马巍, 等. 青藏粉质黏土单向冻结冷生构造发育及冻胀发展过程试验研究[J]. 岩土力学, 2016, 37(5): 1333-1342.

      WANG Yongtao, WANG Dayan, MA Wei, et al. Experimental study of development of cryostructure and frost heave of the Qinghai-Tibet silty clay under one-dimensional freezing[J]. Rock and Soil Mechanics, 2016, 37(5): 1333-1342. (in Chinese)

      [7] 任秀玲, 俞祁浩, 王金国, 等. 黏土单向冻融作用下冷生构造及冻胀特性试验研究[J]. 水利学报, 2021, 52(1): 81-92.

      REN Xiuling, YU Qihao, WANG Jinguo, et al. Experimental study on the characteristics of cryostructure and frost heave of clay under one-dimensional freeze-thaw[J]. Journal of Hydraulic Engineering, 2021, 52(1): 81-92. (in Chinese)

      [8] 杨磊, 姚远, 张冬冬. 有机相变储能材料的研究进展[J]. 新能源进展, 2012, 7(5): 464-472.

      YANG Lei, YAO Yuan, ZHANG Dongdong, et al. Progress of organic phase change energy storage materials[J]. Advances in New and Renewable Energy, 2012, 7(5): 464-472. (in Chinese)

      [9]

      MIROSLAVA K, YASER A. Temperature control to improve performance of hempcrete-phase change material wall assemblies in a cold climate[J]. Energies, 2021, 14(17): 5343. doi: 10.3390/en14175343

      [10]

      SAKULICH A R, BENTZ D P. Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles[J]. Journal of Materials in Civil Engineering, 2012, 24(8): 1034-1042. doi: 10.1061/(ASCE)MT.1943-5533.0000381

      [11]

      ANUPAM B R, SAHOO U C, RATH P. Phase change materials for pavement applications: a review[J]. Construction and Building Materials, 2020, 247: 118553. doi: 10.1016/j.conbuildmat.2020.118553

      [12] 王友乐, 刘东海, 梁健羽. 用于寒区心墙冬季施工的相变黏土热学性能研究[J]. 水力发电学报, 2021, 40(7): 105-117.

      WANG Youle, LIU Donghai, LIANG Jianyu. Investigation on thermal properties of core-wall clay incorporated with phase change material for winter construction in cold regions[J]. Journal of Hydroelectric Engineering, 2021, 40(7): 105-117. (in Chinese)

      [13] 刘东海, 戴怀建, 郑涵. 心墙相变砾质土工程特性及寒区冬季施工防冻控温研究[J]. 水利学报, 2022, 53(8): 914-925.

      LIU Donghai, DAI Huaijian, ZHENG Han. Engineering characteristics and temperature control of phase change material and gravel mixed soil for core wall anti-freezing[J]. Journal of Hydraulic Engineering, 2022, 53(8): 914-925. (in Chinese)

      [14] 武立波, 祁伟, 牛富俊, 等. 我国季节性冻土区公路路基冻害及其防治研究进展[J]. 冰川冻土, 2015, 37(5): 1283-1293.

      WU Libo, QI Wei, NIU Fujun, et al. A review of studies on roadbed frozen damage and countermeasures in seasonal frozen ground regions in China[J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1283-1293. (in Chinese)

      [15] 凌盛, 姚鑫, 王宗盛. 高海拔多年冻土分布特征、冻融破坏以及工程防治措施[J]. 工程地质学报, 2014, 22(增刊1): 476-482.

      LING Sheng, YAO Xin, WANG Zongsheng. Distribution feature, frozen thawing damage and engineering prevention measure of high-altitude permafrost[J]. Journal of Engineering Geology, 2024, 22(S1): 476-482. (in Chinese)

      [16] 赵亮, 景立平, 单振东. 冻土冻胀模型研究现状与进展[J]. 自然灾害学报, 2020, 29(4): 43-52.

      ZHAO Liang, JING Liping, SHAN Zhendong. Research status and progress of frost heave model for frozen soil[J]. Journal of Natural Disasters, 2020, 29(4): 43-52. (in Chinese)

      [17]

      CHEN Y, HUANG Y, WU M, et al. Fly ash/paraffin composite phase change material used to treat thermal and mechanical properties of expansive soil in cold regions[J]. Journal of Renewable Materials, 2022, 10(4): 1153-1173. doi: 10.32604/jrm.2022.018856

      [18] 黄英豪, 陈永, 朱洵, 等. 相变材料改良膨胀土冻融性能试验研究及微观机理分析[J]. 岩土工程学报, 2021, 43(11): 1994-2002. doi: 10.11779/CJGE202111005

      HUANG Yinghao, CHEN Yong, ZHU Xun, et al. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. (in Chinese) doi: 10.11779/CJGE202111005

      [19]

      MAHEDI M, CETIN B, CETIN K S. Freeze-thaw performance of phase change material (PCM) incorporated pavement subgrade soil[J]. Construction and Building Materials, 2019, 202: 449-464. doi: 10.1016/j.conbuildmat.2018.12.210

      [20]

      ZHANG S, TENG J, HE Z, et al. Canopy effect caused by vapour transfer in covered freezing soils[J]. Géotechnique, 2016, 66(11): 927-940. doi: 10.1680/jgeot.16.P.016

      [21] 薛珂, 温智, 张明礼, 等. 土体冻结过程中基质势与水分迁移及冻胀的关系[J]. 农业工程学报, 2017, 33(10): 176-183. doi: 10.11975/j.issn.1002-6819.2017.10.023

      XUE Ke, WEN Zhi, ZHANG Mingli, et al. Relationship between matric potential, moisture migration and frost heave in freezing process of soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 176-183. (in Chinese) doi: 10.11975/j.issn.1002-6819.2017.10.023

      [22]

      WANG Y T, HUA W H, XU X T, et al. Moisture migration in the Qinghai-Tibet silty clay within an added quartz sand layer under one-dimensional freezing[J]. Cold Regions Science and Technology, 2022, 202: 103627. doi: 10.1016/j.coldregions.2022.103627

      [23] 于本田, 陈延飞, 李双洋, 等. 正十四烷/石墨低温相变水泥基材料的制备及冻融损伤演化[J]. 复合材料学报, 2022, 39(6): 2864-2874.

      YU Bentian, CHEN Yanfei, LI Shuangyang, et al. Preparation and freeze-thaw damage evolution of n-tetradecane/graphite low-temperature phase change cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2864-2874. (in Chinese)

      [24] 章学来, 王绪哲, 王继芬, 等. 正十四烷烃相变过程的分子动力学模拟[J]. 储能科学与技术, 2019, 8(5): 874-879.

      ZHANG Xuelai, WANG Xuzhe, WANG Jifen, et al. Molecular dynamics simulation of phase transformation process of n-tetradecane[J]. Energy Storage Science and Technology, 2019, 8(5): 874-879. (in Chinese)

      [25] 刘东海, 郑涵, 杨家琦. 松铺覆盖下心墙相变土防冻控温性能试验研究[J]. 水力发电学报, 2022, 41(7): 38-46.

      LIU Donghai, ZHENG Han, YANG Jiaqi. Investigation on anti-freezing performance of core wall phase change material-incorporated clay with an upper loose-covering layer[J]. Journal of Hydroelectric Engineering, 2022, 41(7): 38-46. (in Chinese)

      [26]

      BAI R Q, LAI Y M, PEI W S, et al. Study on the frost heave behavior of the freezing unsaturated silty clay[J]. Cold Regions Science and Technology, 2022, 197: 103525. doi: 10.1016/j.coldregions.2022.103525

      [27] 邢述彦. 土壤冻结温度测定试验研究[J]. 太原理工大学学报, 2004, 35(4): 385-387, 409.

      XING Shuyan. Experiment study on measurements of soil frozen temperature[J]. Journal of Taiyuan University of Technology, 2004, 35(4): 385-387, 409. (in Chinese)

      [28] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010.

      XU Xuezu, WANG Jiacheng, ZHANG Lixin. Permafrost Physics[M]. Beijing: Science Press, 2010. (in Chinese)

      [29]

      ARENSON L U, SEGO D C. A new hypothesis on ice lens formation in frost-susceptible soils[C]// 9th International Conference on Permafrost, Airbanks, 2008.

      [30] 张世民, 李双洋. 青藏粉质黏土冻融循环试验研究[J]. 冰川冻土, 2012, 34(3): 625-631.

      ZHANG Shimin, LI Shuangyang. Experimental study of the Tibetan silty clay under freeze-thaw cycles[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 625-631. (in Chinese)

      [31]

      KONRAD J M, SAMSON M. Hydraulic conductivity of kaolinite-silt mixtures subjected to closed-system freezing and thaw consolidation[J]. Canadian Geotechnical Journal, 2000, 37(4): 857-869.

      [32]

      CHAMBERLAIN E J, GOW A J. Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology, 1979, 13(1/2/3/4): 73-92.

      [33]

      MORGENSTERN N R. Geotechnical engineering and frontier resource development[J]. Géotechnique, 1981, 31(3): 305-365.

      [34]

      ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430.

      [35]

      LIU Z Y, LIU J K, LI X, et al. Experimental study on the volume and strength change of an unsaturated silty clay upon freezing[J]. Cold Regions Science and Technology, 2019, 157: 1-12.

      [36] 王效宾, 杨平, 王海波, 等. 冻融作用对黏土力学性能影响的试验研究[J]. 岩土工程学报, 2009, 31(11): 1768-1772. http://cge.nhri.cn/cn/article/id/8440

      WANG Xiaobin, YANG Ping, WANG Haibo, et al. Experimental study on effects of freezing and thawing on mechanical properties of clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1768-1772. (in Chinese) http://cge.nhri.cn/cn/article/id/8440

      [37] 梁波, 张贵生, 刘德仁. 冻融循环条件下土的融沉性质试验研究[J]. 岩土工程学报, 2006, 28(10): 1213-1217. http://cge.nhri.cn/cn/article/id/12188

      LIANG Bo, ZHANG Guisheng, LIU Deren. Experimental study on thawing subsidence characters of permafrost under frost heaving and thawing circulation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1213-1217. (in Chinese) http://cge.nhri.cn/cn/article/id/12188

      [38] 杨成松, 何平, 程国栋, 等. 冻融作用对土体干容重和含水量影响的试验研究[J]. 岩石力学与工程学报, 2003, 22(增刊2): 2695-2699.

      YANG Chengsong, HE Ping, CHENG Guodong, et al. Testing study on influence of freezing and thawing on dry density and water content of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2695-2699. (in Chinese)

    • 期刊类型引用(13)

      1. 张沛杰,王展亮. 石灰和水泥改良软土力学性能及水稳定性研究. 湖南工程学院学报(自然科学版). 2025(01): 79-87 . 百度学术
      2. 罗跃春,甘展孜,曾新雄,王宁伟. 珠江口西岸滨海区软土属性分析. 土工基础. 2024(02): 239-242 . 百度学术
      3. 宋许根. 广州南沙某深厚软土区综合管廊基坑变形破坏分析. 岩石力学与工程学报. 2023(S1): 3629-3642 . 百度学术
      4. 蔡子勇,乔世范,檀俊坤,刘屹颀. 南沙港区深厚淤泥软土特性及空间异性研究. 地下空间与工程学报. 2023(03): 897-910 . 百度学术
      5. 李天降,朱孟君,王哲,宋许根,甄洁,衣凡,雷华阳,郑刚,程雪松. 软土区管廊基坑柔性支护下基坑变形控制标准. 科学技术与工程. 2023(21): 9199-9206 . 百度学术
      6. 田琦,陈国垚,王伟,史宗刚,刘红位. 福建沿海原状软土力学特性试验研究. 水利与建筑工程学报. 2023(05): 78-84 . 百度学术
      7. 裘友强,张留俊,富志鹏,刘军勇,张微,王超. 内陆河湖相软土土性指标统计特征与竖向变化规律研究. 水利水电技术(中英文). 2023(12): 23-34 . 百度学术
      8. 刘彬,徐苏静,张四俊,惠海鹏,居俊. 沿海地区深厚软土工程力学特性分析. 江苏建筑. 2022(03): 101-104 . 百度学术
      9. 罗维高,林惠庭,章志,卢荣富,施雨,周晓敏. 大直径超长距离钢顶管施工技术应用分析. 广东土木与建筑. 2022(08): 71-75 . 百度学术
      10. 李治斌,党星海,蔡明祥,赵健赟,郁林,李先怡. 基于PSInSAR技术的珠海市地表沉降监测与归因分析. 自然灾害学报. 2021(01): 38-46 . 百度学术
      11. 戴巍,陈智超,冯青山,麦凌威,祝敏刚. 木质纤维与水泥共同改良软土的力学性能与微观机制分析. 水力发电. 2021(03): 121-125 . 百度学术
      12. 陆惠平,朱挻,刘泽,何矾,李洪. 绍兴淤泥质软土工程特性. 建筑技术开发. 2021(15): 155-157 . 百度学术
      13. 刘维正,葛孟源,李天雄. 南沙海相软土工程特性原位测试对比与统计规律分析. 岩土工程学报. 2021(S2): 267-275 . 本站查看

      其他类型引用(9)

    图(16)  /  表(2)
    计量
    • 文章访问数:  316
    • HTML全文浏览量:  32
    • PDF下载量:  79
    • 被引次数: 22
    出版历程
    • 收稿日期:  2023-08-29
    • 网络出版日期:  2024-11-10
    • 刊出日期:  2025-03-31

    目录

      /

      返回文章
      返回