• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水泥固化海相软土劣化深度快速预测方法

王曼, 杨俊杰, 武亚磊, 王子谋

王曼, 杨俊杰, 武亚磊, 王子谋. 水泥固化海相软土劣化深度快速预测方法[J]. 岩土工程学报, 2024, 46(7): 1549-1555. DOI: 10.11779/CJGE20230814
引用本文: 王曼, 杨俊杰, 武亚磊, 王子谋. 水泥固化海相软土劣化深度快速预测方法[J]. 岩土工程学报, 2024, 46(7): 1549-1555. DOI: 10.11779/CJGE20230814
WANG Man, YANG Junjie, WU Yalei, WANG Zimou. A rapid prediction method for deterioration depth of cement-solidified marine soft soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1549-1555. DOI: 10.11779/CJGE20230814
Citation: WANG Man, YANG Junjie, WU Yalei, WANG Zimou. A rapid prediction method for deterioration depth of cement-solidified marine soft soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1549-1555. DOI: 10.11779/CJGE20230814

水泥固化海相软土劣化深度快速预测方法  English Version

基金项目: 

国家自然科学基金项目 52378380

国家自然科学基金项目 52078474

国家自然科学基金项目 51779235

详细信息
    作者简介:

    王曼(1994—),女,博士研究生,主要从事软土地基加固等方面的研究工作。E-mail: 694501276@qq.com

    通讯作者:

    武亚磊, E-mail: wuyalei@ouc.edu.cn

  • 中图分类号: TU448

A rapid prediction method for deterioration depth of cement-solidified marine soft soils

  • 摘要: 劣化深度是评价固化土劣化程度较为简明的指标。基于常规腐蚀试验结果的幂函数形式固化土劣化深度预测方法具有实用性,腐蚀试验中腐蚀时间取值越长、劣化深度越深,预测结果越准确。固化土劣化是漫长的过程,利用高浓度腐蚀介质的加速腐蚀试验可缩短试验周期,实现劣化深度的快速预测。水泥固化海相软土的腐蚀试验结果表明,3倍浓度海水制备的腐蚀土腐蚀水泥土28 d的加速腐蚀试验与常规腐蚀试验腐蚀360 d的劣化深度存在线性关系,基于两者的等效关系并结合幂函数形式劣化深度预测式,提出水泥固化海相软土劣化深度快速预测方法,预测的劣化深度发展趋势与实测结果较为吻合。基于加速腐蚀试验结果的幂函数形式固化土劣化深度快速预测方法可行且具有实用性,研究思路对于类似劣化问题的研究具有一定的借鉴意义。
    Abstract: The deterioration depth is a relatively simple index to evaluate the deterioration degree of solidified soils. The practical prediction method for the deterioration depth of solidified soils is in the form of power function based on the results of the conventional deterioration tests, while the longer the corrosion time and the deeper the deterioration depth, the more accurate the predicted results. The deterioration of solidified soils is a lengthy process, and the accelerated deterioration tests for high concentration corrosive media can shorten the test period and obtain rapid prediction of the deterioration depth. The deterioration test results of cement-solidified marine soft soils indicate that there is a linear relationship between the 28 d accelerated deterioration test of erosion soil prepared with 3 times seawater concentration and the 360 d deterioration depth of the conventional deterioration tests. Then based on the equivalent relationship between them and the power function formula for predicting the deterioration depth, a rapid prediction method for the deterioration depth of cement-stabilized marine soft soils is proposed, and the predicted development trend of the deterioration depth is consistent with the measured results. The rapid prediction method for the deterioration depth of solidified soils based on the accelerated deterioration test results in the power function form is feasible and practical. The research idea is of certain reference significance for the researches on the similar deterioration problems.
  • 图  1   试验用土的颗粒粒径级配累积曲线

    Figure  1.   Grain-size distribution curves of soils

    图  2   制备好的水泥土试样(东营港软土,aw=14%)

    Figure  2.   Prepared cement soil sample (soft soil of Dongying Port, aw=14%)

    图  3   微型贯入试验仪

    Figure  3.   Micro penetration test apparatus

    图  4   微型贯入试验结果

    Figure  4.   Micro penetration test results

    图  5   比贯入阻力曲线示意图及劣化深度定义[29]

    Figure  5.   Schematic diagram of penetration resistance curve and definition of deterioration depth[29]

    图  6   加速腐蚀试验结果与常规腐蚀试验结果的等效关系

    Figure  6.   Equivalent relation between results of accelerated deterioration tests and those of conventional deterioration tests

    图  7   胶州湾软土常规腐蚀试验试样微型贯入试验结果

    Figure  7.   Micro penetration test results of samples of conventional deterioration tests of soft soil in Jiaozhou Bay

    图  8   东营港软土常规腐蚀试验试样微型贯入试验结果

    Figure  8.   Micro penetration test results of samples of conventional deterioration tests of soft soil in Dongyin Port

    图  9   预测结果与试验结果对比

    Figure  9.   Comparison between predicted and test results

    表  1   试验用土的基本物理性质

    Table  1   Basic physical properties of soils

    试验用土 塑限wP/% 17 mm液限w/% 塑性指数IP 相对质量密度Gs 分类
    胶州湾软土 21.0 31.3 10.3 2.72 低液限黏土
    东营港软土 26.5 29.7 3.2 2.70 低液限粉土
    下载: 导出CSV

    表  2   胶州湾、东营港海水及人工海水主要离子质量浓度

    Table  2   Concentrations of major ions in seawater

    项目 Ca2+/(mg·kg-1) Mg2+/(mg·kg-1) Cl-/(mg·kg-1) SO42-/(mg·kg-1) pH
    胶州湾海水 241.3 1149.3 13837.2 2198.3 8.3
    东营港海水 296.2 1065.5 16821.3 2563.8 8.0
    c 300 1200 14000 2400 7.9
    3c 900 3600 42000 7200 7.9
    下载: 导出CSV

    表  3   水泥土试样制备方案

    Table  3   Preparation schemes of cement soil samples

    试验用土 水泥掺入比aw/% 灰水比R
    胶州湾软土 7,10,14 0.3129
    0.4694
    0.6259
    东营港软土 7,10,14 0.3248
    0.4873
    0.6497
    下载: 导出CSV

    表  4   验证预测方法的劣化试样制备方案

    Table  4   Sample preparing schemes for rapid validate prediction methods

    试验用土 水泥掺入比aw/% 灰水比R 腐蚀时间t/d
    胶州湾软土 7,10,14 0.3129 90,180,720
    0.4694
    0.6259
    东营港软土 7,10,14 0.3248 90,180,720
    0.4873
    0.6497
    下载: 导出CSV
  • [1] 龚晓南. 复合地基理论及工程应用[M]. 2版. 北京: 中国建筑工业出版社, 2007.

    GONG Xiaonan. Theory of Composite Foundation and its Engineering Application[M]. 2nd ed. Beijing: China Architecture & Building Press, 2007. (in Chinese)

    [2] 刘松玉, 钱国超, 章定文. 粉喷桩复合地基理论与工程应用[M]. 北京: 中国建筑工业出版社, 2006.

    LIU Songyu, QIAN Guochao, ZHANG Dingwen. The Principle and Application of Dry Jet Mixing Composite Foundation[M]. Beijing: China Architecture & Building Press, 2006. (in Chinese)

    [3]

    IZUO H, NAKARAI K, KULIK D A. Twenty-two-year investigation of strength development and surface deterioration of cement-treated clay in an in situ field test[J]. Cement and Concrete Composites, 2022, 134: 104783. doi: 10.1016/j.cemconcomp.2022.104783

    [4] 武亚磊, 杨俊杰. 土体固化剂: 材料·作用机理·应用[M]. 北京: 化学工业出版社, 2022: 46-65.

    WU Yalei, YANG Junjie. Soil Stabilizer[M]. Beijing: Chemical Industry Press, 2022: 46-65. (in Chinese)

    [5] 闫楠, 杨俊杰, 刘强, 等. 海水环境下水泥土强度衰减过程室内试验研究[J]. 土木工程学报, 2017, 50(11): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201711012.htm

    YAN Nan, YANG Junjie, LIU Qiang, et al. Laboratory test on strength deterioration process of soil cement in seawater environment[J]. China Civil Engineering Journal, 2017, 50(11): 115-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201711012.htm

    [6] 尚金瑞, 杨俊杰, 董猛荣, 等. 表层劣化对桩承载性状影响的室内模拟试验[J]. 岩土工程学报, 2013, 35(增刊2): 857-861. http://cge.nhri.cn/cn/article/id/15506

    SHANG Jinrui, YANG Junjie, DONG Mengrong, et al. Laboratory tests on influences of skin degradation on bearing properties of piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 857-861. (in Chinese) http://cge.nhri.cn/cn/article/id/15506

    [7]

    CUI X Z, ZHANG N, LI S C, et al. Deterioration of soil-cement piles in a saltwater region and its influence on the settlement of composite foundations[J]. Journal of Performance of Constructed Facilities, 2016, 30(1): 04014195. doi: 10.1061/(ASCE)CF.1943-5509.0000713

    [8] 闫楠, 杨俊杰, 董猛荣, 等. 摩擦型桩表面劣化时的沉降特性室内模拟试验[J]. 哈尔滨工业大学学报, 2016, 48(2): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201602025.htm

    YAN Nan, YANG Junjie, DONG Mengrong, et al. Laboratory model tests on settlement characteristics of friction pile with surface deterioration[J]. Journal of Harbin Institute of Technology, 2016, 48(2): 147-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201602025.htm

    [9]

    PASTOR J L, ORTEGA J M, CLIMENT M A, et al. Skin friction coefficient change on cement grouts for micropiles due to sulfate attack[J]. Construction and Building Materials, 2018, 163: 80-86. doi: 10.1016/j.conbuildmat.2017.12.091

    [10]

    PHAM V N, TURNER B, HUANG J S, et al. Long-term strength of soil-cement columns in coastal areas[J]. Soils and Foundations, 2017, 57(4): 645-654. doi: 10.1016/j.sandf.2017.04.005

    [11]

    SHINSHA H, TSUTSUMI A. Experimental study on deterioration of cement-mixed soil and crushed particles in seawater[J]. Journal of Japan Society of Civil Engineers, Ser C (Geosphere Engineering), 2016, 72(3): 265-276. doi: 10.2208/jscejge.72.265

    [12]

    WU M, ZHANG Y S, JI Y S, et al. A comparable study on the deterioration of limestone powder blended cement under sodium sulfate and magnesium sulfate attack at a low temperature[J]. Construction and Building Materials, 2020, 243: 118279. doi: 10.1016/j.conbuildmat.2020.118279

    [13]

    SHINSHA H, KUMAGAI T. Material properties of solidified soil grains produced from dredged marine clay[J]. Soils and Foundations, 2018, 58(3): 678-688. doi: 10.1016/j.sandf.2018.03.003

    [14] 董晓强, 苏楠楠, 黄新恩, 等. 污水浸泡对水泥土强度和电阻率特性影响的试验研究[J]. 岩土力学, 2014, 35(7): 1855-1862, 1870. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407007.htm

    DONG Xiaoqiang, SU Nannan, HUANG Xin'en, et al. Effect of sewage on electrical resistivity and strength of cemented soil[J]. Rock and Soil Mechanics, 2014, 35(7): 1855-1862, 1870. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407007.htm

    [15] 韩鹏举, 白晓红. 无机化合物对水泥土腐蚀的作用机理及试验[J]. 腐蚀与防护, 2013, 34(5): 381-384. https://www.cnki.com.cn/Article/CJFDTOTAL-FSYF201305004.htm

    HAN Pengju, BAI Xiaohong. Experiment and chemical mechanism of corrosive action of inorganic compounds on cemneted soil[J]. Corrosion & Protection, 2013, 34(5): 381-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSYF201305004.htm

    [16] 吴燕开, 史可健, 胡晓士, 等. 海水侵蚀下钢渣粉+水泥固化土强度劣化试验研究[J]. 岩土工程学报, 2019, 41(6): 1014-1022. doi: 10.11779/CJGE201906004

    WU Yankai, SHI Kejian, HU Xiaoshi, et al. Experimental study on strength degradation of steel slag + cement-solidified soil under seawater erosion[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1014-1022. (in Chinese) doi: 10.11779/CJGE201906004

    [17] 刘松玉, 郑旭, 蔡光华, 等. 活性MgO碳化固化土的抗硫酸盐侵蚀性研究[J]. 岩土力学, 2016, 37(11): 3057-3064. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611003.htm

    LIU Songyu, ZHENG Xu, CAI Guanghua, et al. Study of resistance to sulfate attack of carbonated reactive MgO-stabilized soils[J]. Rock and Soil Mechanics, 2016, 37(11): 3057-3064. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611003.htm

    [18] 杨俊杰, 孙涛, 张玥宸, 等. 腐蚀性场地形成的水泥土的劣化研究[J]. 岩土工程学报, 2012, 34(1): 130-138. http://cge.nhri.cn/cn/article/id/14499

    YANG Junjie, SUN Tao, ZHANG Yuechen, et al. Deterioration of soil cement stabilized in corrosive site[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 130-138. (in Chinese) http://cge.nhri.cn/cn/article/id/14499

    [19]

    ASHRAF W. Carbonation of cement-based materials: challenges and opportunities[J]. Construction and Building Materials, 2016, 120: 558-570. doi: 10.1016/j.conbuildmat.2016.05.080

    [20] 曹智国, 章定文, 彭之晟, 等. 水泥固化铅污染土碳化深度变化规律及预测方法[J]. 东南大学学报(自然科学版), 2021, 51(4): 631-639. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202104012.htm

    CAO Zhiguo, ZHANG Dingwen, PENG Zhisheng, et al. Change regularities and prediction method for carbonation depth of cement-stabilized soils contaminated with lead[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(4): 631-639. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202104012.htm

    [21] 崔新壮, 龚晓南, 李术才, 等. 盐水环境下水泥土桩劣化效应及其对道路复合地基沉降的影响[J]. 中国公路学报, 2015, 28(5): 66-76, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201505002.htm

    CUI Xinzhuang, GONG Xiaonan, LI Shucai, et al. Deterioration effect of soil-cement pile under saltwater environment and its influence on composite foundation settlement of road[J]. China Journal of Highway and Transport, 2015, 28(5): 66-76, 86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201505002.htm

    [22]

    JIN Q, CUI X Z, SU J W, et al. Laboratory measurement and analysis of the deteriorated layer permeability coefficient of soil-cement deteriorated in a saline environment[J]. Materials, 2019, 12(14): 2245. doi: 10.3390/ma12142245

    [23]

    KITAZUME M, NAKAMURA T, TERASHI M, et al. Laboratory tests on long term strength of cement treated soil[C]// Third International Conference on Grouting and Ground Treatment. New Orleans, 2003.

    [24]

    MIAO J. Evaluation on Long Term Durability of Cement Stabilized Soils under Seawater Environment[D]. Fukuoka: Kyushu University, 2013.

    [25]

    CHOMPOORAT T, THEPUMONG T, KHAMPLOD A, et al. Improving mechanical properties and shrinkage cracking characteristics of soft clay in deep soil mixing[J]. Construction and Building Materials, 2022, 316: 125858. doi: 10.1016/j.conbuildmat.2021.125858

    [26]

    HAYASHI H, NISHIMOTO S, OHISHI K. Long-term Characteristics on Strength of Cement Treated Soil (Part 1)[R]. Hokkaido: Civil Engineering Research Institute of Hokkaido, 2004.

    [27]

    IKEGAMI M, ICHIBA T, TERASHI M. The simple prediction method on the deterioration of cement treated soil[J]. Society of Civil Engineers Annual Conference, 2004, 29(1): 3-537.

    [28]

    HARA H, SUETSUGU D, HAYASHI S, et al. Deterioration progress of cement-treated ariake clay under seawater[J]. Journal of the Society of Materials Science, Japan, 2014, 63(1): 49-54. doi: 10.2472/jsms.63.49

    [29] 刘浩, 杨俊杰, 王曼, 等. 水泥土劣化深度-时间关系预测[J]. 长江科学院院报, 2021, 38(4): 88-93, 101. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202104018.htm

    LIU Hao, YANG Junjie, WANG Man, et al. Prediction of deterioration depth of cement soil over time[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(4): 88-93, 101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202104018.htm

    [30] 闫楠, 杨俊杰. 海水浸泡下水泥土强度衰减室内试验研究[J]. 中南大学学报(自然科学版), 2017, 48(1): 191-202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201701027.htm

    YAN Nan, YANG Junjie. Experimental study on strength deterioration process of cement stabilized soil with seawater immersion[J]. Journal of Central South University (Science and Technology), 2017, 48(1): 191-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201701027.htm

    [31] 刘泉声, 柳志平, 程勇, 等. 水泥土在侵蚀环境中的试验研究和等效分析[J]. 岩土力学, 2013, 34(7): 1854-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307006.htm

    LIU Quansheng, LIU Zhiping, CHENG Yong, et al. Experimental study and equivalent analysis of cemented soil under corrosion environment[J]. Rock and Soil Mechanics, 2013, 34(7): 1854-1860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307006.htm

    [32] 白书麒, 杨俊杰, 李恩, 等. 劣化水泥土渗透特性研究[J]. 水利水电技术(中英文), 2021, 52(2): 184-193. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202102020.htm

    BAI Shuqi, YANG Junjie, LI En, et al. Study on permeability of deteriorated cement-soil[J]. Water Resources and Hydropower Engineering, 2021, 52(2): 184-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202102020.htm

    [33]

    ZHUTOVSKY S, DOUGLAS HOOTON R. Accelerated testing of cementitious materials for resistance to physical sulfate attack[J]. Construction and Building Materials, 2017, 145: 98-106. doi: 10.1016/j.conbuildmat.2017.03.239

    [34]

    LI S, YANG J, LIU H, DONG M, WANG M. The accelerated deterioration experiment method of cement soil based on the equivalent relationship between corrosive solution concentration and time[C]// The 8th International Symposium on Project Management. Beijing, 2020.

    [35]

    HARA H, SUETSUGU D, MATSUDA H, et al. Mechanical property and deterioration rate under seawater of lime and cement stabilized clay containing magnesium salts[J]. Journal of Japan Society of Civil Engineers, Ser C (Geosphere Engineering), 2016, 72(4): 294-299. doi: 10.2208/jscejge.72.294

    [36] 焦德才, 杨俊杰, 董猛荣, 等. 劣化对水泥土渗透性影响室内试验研究[J]. 岩土工程学报, 2019, 41(增刊2): 97-100. doi: 10.11779/CJGE2019S2025

    JIAO Decai, YANG Junjie, DONG Mengrong, et al. Laboratory tests on effect of deterioration on permeability of cement soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 97-100. (in Chinese) doi: 10.11779/CJGE2019S2025

    [37] 焦德才. 劣化水泥土渗透性及预测研究[D]. 青岛: 中国海洋大学, 2019.

    JIAO Decai. Study on Permeability and Prediction of Deteriorated Soil[D]. Qingdao: Ocean University of China, 2019. (in Chinese)

    [38] 土的工程分类标准: GB/T 50145—2007[S]. 北京: 中国计划出版社, 2008.

    Standard for Engineering Classification of Soil: GB/T 50145—2007[S]. Beijing: China Planning Press, 2008. (in Chinese)

    [39]

    TOYOSAWA Y, YANG J J, MIURA S, et al. Bearing capacity of reinforced ground using centrifuge tests[J]. Doboku Gakkai Ronbunshu, 2004(757): 247-257.

图(9)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 网络出版日期:  2023-11-29
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回