• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于考虑变形效应的土-水特征曲线求解非饱和地基动力响应

胡静, 金林廉, 吕志豪, 张家康, 边学成

胡静, 金林廉, 吕志豪, 张家康, 边学成. 基于考虑变形效应的土-水特征曲线求解非饱和地基动力响应[J]. 岩土工程学报, 2025, 47(2): 397-406. DOI: 10.11779/CJGE20230800
引用本文: 胡静, 金林廉, 吕志豪, 张家康, 边学成. 基于考虑变形效应的土-水特征曲线求解非饱和地基动力响应[J]. 岩土工程学报, 2025, 47(2): 397-406. DOI: 10.11779/CJGE20230800
HU Jing, JIN Linlian, LÜ Zhihao, ZHANG Jiakang, BIAN Xuecheng. Dynamic response solutions of unsaturated soil foundation using soil-water characteristic curve considering deformation effects[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 397-406. DOI: 10.11779/CJGE20230800
Citation: HU Jing, JIN Linlian, LÜ Zhihao, ZHANG Jiakang, BIAN Xuecheng. Dynamic response solutions of unsaturated soil foundation using soil-water characteristic curve considering deformation effects[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 397-406. DOI: 10.11779/CJGE20230800

基于考虑变形效应的土-水特征曲线求解非饱和地基动力响应  English Version

基金项目: 

国家自然科学基金项目 52108308

国家重点研发计划青年科学家项目 2024YFC2911000

详细信息
    作者简介:

    胡静(1991—),博士,副研究员,从事交通荷载作用下软土地基动力响应方面的研究工作。E-mail:jingh@fzu.edu.cn

  • 中图分类号: TU435

Dynamic response solutions of unsaturated soil foundation using soil-water characteristic curve considering deformation effects

  • 摘要: 为研究移动荷载作用下的非饱和地基动力响应,在传统V-G土-水特征曲线模型的基础上,建立了考虑变形效应的土-水特征曲线模型,并基于该模型推导了新的非饱和土动力控制方程,从而完整描述非饱和土在受动力作用下的水-力耦合作用。进一步的,采用2.5维有限元法对控制方程进行求解,求解结果分别与单相弹性介质,双相饱和介质和三相非饱和介质的解析解进行对比,均验证了该求解方法的准确性;不同介质模型的计算耗时分析表明2.5维有限元法是目前求解多孔介质动力问题的一种优势算法。通过数值分析发现,采用传统的、未考虑变形效应的土-水特征曲线会低估非饱和地基的振动强度。
    Abstract: To investigate the dynamic response of unsaturated soils under moving loads, a new soil-water characteristic curve (SWCC) model is established considering the deformation caused by applied load based on the traditional V-G SWCC model. Using this modified SWCC model, a dynamic governing equation for unsaturated soils, which fully describes the water-force coupling effects of unsaturated soils under dynamic loading, is derived. The governing equation is solved using the 2.5-dimensional finite element method (2.5D FEM). The obtained solutions are compared with the analytical ones for single-phase medium, double-phase saturated medium and three-phase unsaturated medium, respectively, which all confirm the accuracy of the proposed solution method. The computational time analysis for different medium models demonstrate that the 2.5D FEM is an advantageous algorithm for solving the dynamic problems of porous media. The numerical analysis reveals that using the traditional SWCC without considering the deformation will underestimate the vibration intensity of unsaturated foundations.
  • 图  1   饱和度与孔隙比的关系图

    Figure  1.   Relationship between saturation and void ratio

    图  2   不同孔隙比下的土-水特征曲线示意图

    Figure  2.   Schematic diagram of soil-water characteristic curve under different void ratios

    图  3   模型网格分布示意图

    Figure  3.   Diagram of mesh distribution

    图  4   单相弹性地基验证

    Figure  4.   Verification of single-phase elastic medium

    图  5   饱和地基验证

    Figure  5.   Verification of two-phase saturated medium

    图  6   非饱和地基验证

    Figure  6.   Verification of three-phase unsaturated medium

    图  7   SWCC考虑变形对位移响应的影响

    Figure  7.   Displacement responses under SWCC considering effect of deformation

    图  8   不同速度下考虑变形效应所产生的位移增幅随饱和度的变化

    Figure  8.   Amplification of deformation and saturation considering different velocities

    表  1   单相弹性地基计算参数[12]

    Table  1   Parameters of single-phase elastic medium[12]

    Ks/GPa Kw/GPa Ka/kPa G/MPa ν n ρs/(kg·m-3) ρw/(kg·m-3) ρa/(kg·m-3) Sr
    35 2.25 145 25 0.125 0.001 2500 0.001 0.001 0.001
    下载: 导出CSV

    表  2   双相饱和地基计算参数[9]

    Table  2   Parameters of two-phase saturated medium[9]

    Kb/MPa Ks/GPa Kw/GPa Ka/kPa G/MPa ν n ρs/(kg·m-3) ρw/(kg·m-3) ρa/(kg·m-3) Sr kD/(m·s-1)
    8.77 11 2.25 145 2997.6 0.125 0.3 2500 1000 0.001 1 1×10-6
    下载: 导出CSV

    表  3   非饱和地基计算参数[16]

    Table  3   Parameters of unsaturated medium[16]

    Kb/MPa Ks/GPa Kw/GPa Ka/kPa Gs/MPa ν n ρs/(kg·m-3) ρw/(kg·m-3) ρa/(kg·m-3)
    8.33 35 2.25 145 3.85 0.35 0.45 2650 1000 1.28
    Sr Sa ηw/(Ns·m-2) ηa/(Ns·m-2) Sw0 κ/m2 β/(Pa-1) m k φ'
    0.5,0.8 0.5,0.2 0.001 18×10-6 0.05 5.3×10-13 1.0×10-4 0.5 2 10°
    下载: 导出CSV
  • [1] 黄长生, 周耘, 张胜男, 等. 长江流域地下水资源特征与开发利用现状[J]. 中国地质, 2021, 48(4): 979-1000.

    HUANG Changsheng, ZHOU Yun, ZHANG Shengnan, et al. Groundwater resources in the Yangtze River Basin and its current development and utilization[J]. Geology in China, 2021, 48(4): 979-1000. (in Chinese)

    [2] 吴庆华, 汪啸, 范越. 长江中下游地下水资源战略储备选址适宜性评价指标体系[J]. 长江科学院院报, 2022, 39(8): 145-151, 158.

    WU Qinghua, WANG Xiao, FAN Yue. Evaluation index system for the suitability of groundwater strategic reserve site in middle and Lower Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(8): 145-151, 158. (in Chinese)

    [3] 池田俊雄. 地盤地質と鉄道土木の 50年[J]. 応用地質, 1998, 39(1): 4-10.

    IKEDA T. 50 years of geology and railway engineering [J]. Applied Geology, 1998, 39(1): 4-10. (in Japanese)

    [4]

    Conrad, British Columbia. Canadian National Train No. Q-102-51-26 Derailment[R]. Canada: Transportation Safety Board of Canada, 1997: 1-24.

    [5]

    EASON G. The stresses produced in a semi-infinite solid by a moving surface force[J]. International Journal of Engineering Science, 1965, 2(6): 581-609. doi: 10.1016/0020-7225(65)90038-8

    [6]

    SHENG X, JONES C J C, PETYT M. Ground vibration generated by a load moving along a railway track[J]. Journal of Sound and Vibration, 1999, 228(1): 129-156. doi: 10.1006/jsvi.1999.2406

    [7] 雷晓燕, 徐斌, 徐满清. 半无限弹性空间中移动荷载动力响应的频域-波数域比例边界有限元法分析[J]. 振动工程学报, 2017, 30(5): 798-805.

    LEI Xiaoyan, XU Bin, XU Manqing. Using the frequency-wave domain scaled boundary finite element method for the dynamic response of the elastic half space due to moving loads[J]. Journal of Vibration Engineering, 2017, 30(5): 798-805. (in Chinese)

    [8]

    BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482-1498. doi: 10.1063/1.1728759

    [9]

    LU J F, JENG D S. A half-space saturated poro-elastic medium subjected to a moving point load[J]. International Journal of Solids and Structures, 2007, 44(2): 573-586. doi: 10.1016/j.ijsolstr.2006.05.020

    [10]

    CAI Y Q, SUN H L, XU C J. Response of railway track system on poroelastic half-space soil medium subjected to a moving train load[J]. International Journal of Solids and Structures, 2008, 45(18/19): 5015-5034. http://core.ac.uk/download/pdf/82345375.pdf

    [11]

    GAO G Y, CHEN Q S, HE J F, et al. Investigation of ground vibration due to trains moving on saturated multi-layered ground by 2.5D finite element method[J]. Soil Dynamics and Earthquake Engineering, 2012, 40: 87-98. doi: 10.1016/j.soildyn.2011.12.003

    [12]

    BIAN X C, HU J, THOMPSON D, et al. Pore pressure generation in a poro-elastic soil under moving train loads[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105711. doi: 10.1016/j.soildyn.2019.105711

    [13] 胡静, 唐跃, 张家康, 等. 高速列车荷载作用下饱和软土地基动力响应研究[J]. 岩土力学, 2021, 42(11): 3169-3181.

    HU Jing, TANG Yue, ZHANG Jiakang, et al. Dynamic responses of saturated soft soil foundation under high speed train[J]. Rock and Soil Mechanics, 2021, 42(11): 3169-3181. (in Chinese)

    [14] 徐明江. 非饱和土地基与基础的动力响应研究[D]. 广州: 华南理工大学, 2010.

    XU Mingjiang. Study on Dynamic Response of Unsaturated Soil Foundation and Foundation[D]. Guangzhou: South China University of Technology, 2010. (in Chinese)

    [15]

    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513

    [16]

    LU Z, FANG R, YAO H L, et al. Dynamic responses of unsaturated half-space soil to a moving harmonic rectangular load[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(9): 1057-1077. doi: 10.1002/nag.2780

    [17]

    FANG R, LU Z, YAO H L, et al. Study on dynamic responses of unsaturated railway subgrade subjected to moving train load[J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 319-323. doi: 10.1016/j.soildyn.2018.08.037

    [18]

    GAO G Y, YAO S F, YANG J, et al. Investigating ground vibration induced by moving train loads on unsaturated ground using 2.5D FEM[J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 72-85. doi: 10.1016/j.soildyn.2019.05.034

    [19] 李绍毅. 土体饱和度对移动荷载引起多层非饱和铁路地基振动的影响[J]. 岩土力学, 2021, 42(1): 151-159, 167.

    LI Shaoyi. Influences of soil saturation on the vibration of multi-layer unsaturated railway ground induced by moving load[J]. Rock and Soil Mechanics, 2021, 42(1): 151-159, 167. (in Chinese)

    [20]

    Corey R H Brooks and A T. Hydraulic properties of porous media and their relation to drainage design[J]. Transactions of the ASAE, 1964, 7(1): 26-28. doi: 10.13031/2013.40684

    [21]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated Soils1[J]. Soil Science Society of America Journal, 1980, 44(5): 892. doi: 10.2136/sssaj1980.03615995004400050002x

    [22]

    FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061

    [23] 孙德安. 非饱和土力学特性及本构模型[J]. 岩土工程学报, 2023, 45(1): 1-23. doi: 10.11779/CJGE20221450

    SUN De'an. Mechanical behaviors and constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 1-23. (in Chinese) doi: 10.11779/CJGE20221450

    [24] 蔡国庆, 田京京, 李舰, 等. 考虑变形及滞回效应影响的三维土-水特征曲面模型[J]. 土木工程学报, 2019, 52(11): 97-107.

    CAI Guoqing, TIAN Jingjing, LI Jian, et al. A three-dimensional soil water characteristic surface model considering deformation and hysteresis effect[J]. China Civil Engineering Journal, 2019, 52(11): 97-107. (in Chinese)

    [25] 胡冉, 陈益峰, 周创兵. 考虑变形效应的非饱和土相对渗透系数模型[J]. 岩石力学与工程学报, 2013, 32(6): 1279-1287. doi: 10.3969/j.issn.1000-6915.2013.06.023

    HU Ran, CHEN Yifeng, ZHOU Chuangbing. A relative hydraulic conductivity model for unsaturated deformable soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1279-1287. (in Chinese) doi: 10.3969/j.issn.1000-6915.2013.06.023

    [26] 张雪东, 赵成刚, 刘艳, 等. 变形对土水特征曲线影响规律模拟研究[J]. 土木工程学报, 2011, 44(7): 119-126.

    ZHANG Xuedong, ZHAO Chenggang, LIU Yan, et al. Modeling study of the relationship between deformation and water retention curve[J]. China Civil Engineering Journal, 2011, 44(7): 119-126. (in Chinese)

    [27]

    YANG Y B, HUNG H H. A 2.5D finite/infinite element approach for modelling visco-elastic bodies subjected to moving loads[J]. International Journal for Numerical Methods in Engineering, 2001, 51(11): 1317-1336. doi: 10.1002/nme.208

    [28] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.

    WANG Xucheng. Finite Element Method[M]. Beijing: Tsinghua University Press, 2003. (in Chinese)

    [29]

    HALL L. Simulations and analyses of train-induced ground vibrations in finite element models[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(5): 403-413. doi: 10.1016/S0267-7261(02)00209-9

  • 期刊类型引用(6)

    1. 王策. 既有结构基础下方隧道开挖扰动破坏及其所需支护力预测. 城市轨道交通研究. 2024(02): 130-134 . 百度学术
    2. 王超,朱春洲,邹金锋,刘波,张晗秋,马江锋. 盾构隧道近接斜交侧穿桥梁桩基变形计算方法. 浙江大学学报(工学版). 2024(03): 557-569 . 百度学术
    3. 魏纲,木志远,齐永洁,郭丙来,项鹏飞. 考虑地层损失的隔离桩对基坑旁侧盾构隧道变形保护研究. 岩土工程学报. 2024(03): 480-489 . 本站查看
    4. 冯国辉,窦炳珺,张高锋,丁士龙,徐长节. 隧道开挖引起水平向位移被动桩的简化计算方法. 土木与环境工程学报(中英文). 2021(02): 10-18 . 百度学术
    5. 冯国辉,周逊泉,何庆亮,徐长节. 隔离桩对盾构掘进引起邻近高铁桩基水平位移的影响分析. 土木与环境工程学报(中英文). 2020(04): 28-35 . 百度学术
    6. 杨文伟,姜远达. 基于ABAQUS软件的桩水平承载特性研究及“m”法应用. 甘肃科技. 2019(09): 104-109 . 百度学术

    其他类型引用(2)

图(8)  /  表(3)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  30
  • PDF下载量:  54
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-08-17
  • 网络出版日期:  2024-06-04
  • 刊出日期:  2025-01-31

目录

    /

    返回文章
    返回