Scaling laws for centrifuge modelling of explosion-induced cratering in sand
-
摘要: 传统弹坑相似律存在适用性和有效性不足的问题,且爆炸成坑离心试验中的科氏力作用尚不明确。开展了砂土中的触地、浅埋爆炸成坑离心模型试验,探究不同重力加速度、药量和埋深工况下的爆炸成坑规律。推导了浅埋和触地爆炸弹坑相似律,给出了弹坑半径公式。对离心模拟爆炸成坑过程中的科氏力作用进行了定量分析和数值模拟。研究结果表明:提出的弹坑相似律能够适用于触地和浅埋爆炸工况,并针对干砂中的离心机试验和常重力试验弹坑数据取得了良好的归一化结果。科氏力主要通过改变土体抛掷回落运动轨迹来影响最终的弹坑形态,浅埋爆炸成坑试验中明显观察到科氏力的影响,弹坑轮廓向着离心机转动方向偏移;触地爆炸弹坑则基本不受科氏力影响。使用更大半径的离心机设备以及在更高离心加速度下开展试验可以显著减小科氏力引起的弹坑偏移误差。研究结果对爆炸成坑效应的离心物理模拟技术和理论分析提供了参考和依据。Abstract: There are shortcomings in generality and applicability for the traditional crater scaling laws, and the Coriolis effects on explosion cratering in centrifuge tests are still unclear. The centrifuge modelling including buried and surface explosions is performed to investigate the cratering effects under different centrifugal accelerations, charge weights and buried depths. The scaling laws on buried and surface explosion craters are derived, and the formula for the crater radius is given. The quantitative analysis and numerical simulation of the Coriolis effects on explosion cratering are carried out. The results show that the proposed crater scaling laws can be applied to both the buried and surface explosions in dry sand, and good uniformity is obtained for the crater data from both the centrifuge tests and 1g tests. The Coriolis force primarily affects the profile of the apparent crater by changing the motion trajectory of sand particles, and it is obviously observed in the buried explosion tests, and the crater profile is asymmetric and shift in the direction of centrifuge rotation. However, the Coriolis force has a negligible effect on the surface explosion cratering. The crater offset error can be significantly reduced by using a centrifuge with a larger beam radius and conducting tests at higher centrifugal accelerations. The research results provide reference and a basis for the centrifugal modelling and theoretical analysis of explosion cratering.
-
Keywords:
- explosion cratering /
- centrifuge modelling /
- scaling law /
- Coriolis force
-
-
表 1 离心试验工况
Table 1 Test conditions
试验编号 爆源当量/mg 爆源埋深/cm 离心加速度/g CE-1 1000 8 106 CE-2 1000 0 31 CE-3 125 0 62 CE-4 25 0 106 -
[1] MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances[J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815-4835. doi: 10.1007/s11831-021-09553-2
[2] 波克罗夫斯基Г И, 费多罗夫И С. 在变形介质中冲击与爆破作用[M]. 刘清荣, 黄文彬, 译. 北京: 中国工业出版社, 1965. POKROVSKY G I, FYODOROV I S. Impact and Explosion Effects in a Deformable Medium[M]. LIU Qingrong, Huang Wenbin, Trans. Beijing: China Industry Press, 1965. (in Chinese)
[3] HENRYCH J. 爆炸动力学及其应用[M]. 熊建国, 译. 北京: 科学出版社, 1987. HENRYCH J. The Dynamics of Explosion and its Use[M]. XIONG Jianguo, trans. Beijing: Science Press, 1987. (in Chinese)
[4] BAKER W E, WESTINE P S, DODGE F T. Similarity methods in engineering dynamics: theory and practice of scale modeling[M]. Amsterdam: Elsevier, 1991.
[5] SCHMIDT R M. A centrifuge cratering experiment: development of a gravity-scaled yield parameter[C]// Impact and Explosion Cratering. New York, 1977.
[6] SCHMIDT R M, HOLSAPPLE K A. Centrifuge Crater Scaling Experiment Ⅰ: Granular Soils[R]. Seattle: Boeing Aerospace Company, 1978.
[7] SCHMIDT R M, HOLSAPPLE K A. Centrifuge Crater Scaling Experiment Ⅱ: Material Strength Effects[R]. Seattle, Washington, USA: Boeing Aerospace Company, 1979.
[8] SCHMIDT R M, HOLSAPPLE K A. Theory and experiments on centrifuge cratering[J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B1): 235-252. doi: 10.1029/JB085iB01p00235
[9] GOODINGS D J, FOURNEY W L, DICK R D. Geotechnical Centrifuge Modeling of Explosion Induced Craters: A Check for Scaling Effects[R]. Maryland: The University of Maryland, 1988.
[10] BROWNELL K C, CHARLIE W A. Centrifuge Modeling of Explosion-induced Craters in Unsaturated Sand[R]. Fort Collins: Colorado State University, Fort Collins, 1992.
[11] HANSEN C, PAK R Y S. Centrifuge characterization of buried, explosive-induced soil ejecta kinematics and crater morphology[J]. Journal of Dynamic Behavior of Materials, 2016, 2(3): 306-325. doi: 10.1007/s40870-016-0067-1
[12] 马立秋, 张建民. 黏性土爆炸成坑和地冲击传播的离心模型试验研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3172-3178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1076.htm MA Liqiu, ZHANG Jianmin. Centrifugal model testing study of explosion-induced craters and propagation of ground shock in clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3172-3178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1076.htm
[13] 范一锴, 陈祖煜, 梁向前, 等. 砂中爆炸成坑的离心模型试验分析方法比较[J]. 岩石力学与工程学报, 2011, 30(增刊2): 4123-4128. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2102.htm FAN Yikai, CHEN Zuyu, LIANG Xiangqian, et al. Comparison of three methods for geotechnical centrifuge model tests of explosion cratering in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 4123-4128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2102.htm
[14] KUTTER B L, O'LEARY L M, THOMPSON P Y. Centrifugal modeling of the effect of blast loading on tunnels [C]// Addendum to Proceedings of the Second Symposium on the Interaction of Non-Nuclear Munitions with Structures. FL, USA, 1985.
[15] GILL J J, KUENNEN S T. Half-space modeling of explosively-formed craters[C]// Proceedings of the International Conference on Centrifuge. 1991.
[16] HOLSAPPLE K A, SCHMIDT R M. On the scaling of crater dimensions: 1. Explosive processes[J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B12): 7247-7256. doi: 10.1029/JB085iB12p07247
[17] STEEDMAN R S. Centrifuge modeling for dynamic geotechnical studies[C]// Proceedings: 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. MO, USA, 1991.
[18] HOLSAPPLE K A, Housen K R. Craters from impacts and explosions V 2.2. 2[DB/OL]. http://keith.aa.washington.edu/craterdata/scaling/index.htm, 2017.
[19] 钱七虎. 岩石爆炸动力学的若干进展[J]. 岩石力学与工程学报, 2009, 28(10): 1945-1968. doi: 10.3321/j.issn:1000-6915.2009.10.001 QIAN Qihu. Some advances in rock blasting dynamics[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945-1968. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.001
[20] MANDAL J, GOEL M D, AGARWAL A K. Underground structures subjected to various blast loading scenarios: a scoping review[J]. Archives of Computational Methods in Engineering, 2022, 29(4): 2491-2512. doi: 10.1007/s11831-021-09664-w
[21] PIEKUTOWSKI A J. Laboratory-scale High-explosive Cratering and Ejecta Phenomenology Studies[R]. NM, USA: Air Force Weapons Lab, Air Force Systems Command, 1974.
[22] 凌道盛, 施昌宇, 郑建靖, 等. 离心模型试验物质运动非惯性系效应[J]. 岩土工程学报, 2021, 43(2): 226-235. doi: 10.11779/CJGE202102002 LING Daosheng, SHI Changyu, ZHENG Jianjing, et al. Non-inertial effects on matter motion in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 226-235. (in Chinese) doi: 10.11779/CJGE202102002
[23] CATALFAMO R S. Dynamic modeling of speed skiing[J]. American Journal of Physics, 1997, 65(12): 1150-1156. doi: 10.1119/1.18753
[24] CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution[J]. Science China Technological Sciences, 2022, 65(12): 2791-2808. doi: 10.1007/s11431-022-2125-x
-
期刊类型引用(2)
1. 占鑫杰,吕冲,桂书润,李振亚. 化学调质及固结作用下市政污泥水分转化规律. 科学技术与工程. 2025(05): 2057-2065 . 百度学术
2. 张玉伟,宋战平,谢永利. 孔隙变化条件下黄土土水特征曲线预测模型. 岩土工程学报. 2022(11): 2017-2025 . 本站查看
其他类型引用(4)
-
其他相关附件