• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土爆炸成坑离心模型试验相似律研究

管龙华, 卢强, 赵凤奎, 张德志, 汪玉冰

管龙华, 卢强, 赵凤奎, 张德志, 汪玉冰. 砂土爆炸成坑离心模型试验相似律研究[J]. 岩土工程学报, 2024, 46(7): 1462-1470. DOI: 10.11779/CJGE20230751
引用本文: 管龙华, 卢强, 赵凤奎, 张德志, 汪玉冰. 砂土爆炸成坑离心模型试验相似律研究[J]. 岩土工程学报, 2024, 46(7): 1462-1470. DOI: 10.11779/CJGE20230751
GUAN Longhua, LU Qiang, ZHAO Fengkui, ZHANG Dezhi, WANG Yubing. Scaling laws for centrifuge modelling of explosion-induced cratering in sand[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1462-1470. DOI: 10.11779/CJGE20230751
Citation: GUAN Longhua, LU Qiang, ZHAO Fengkui, ZHANG Dezhi, WANG Yubing. Scaling laws for centrifuge modelling of explosion-induced cratering in sand[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1462-1470. DOI: 10.11779/CJGE20230751

砂土爆炸成坑离心模型试验相似律研究  English Version

基金项目: 

国家自然科学基金基础科学中心项目 51988101

详细信息
    作者简介:

    管龙华(1998—),男,博士研究生,主要从事地下爆炸效应超重力物理模拟等方面的研究工作。E-mail: glh@zju.edu.cn

    通讯作者:

    汪玉冰, E-mail: wangyubing@zju.edu.cn

  • 中图分类号: TU411

Scaling laws for centrifuge modelling of explosion-induced cratering in sand

  • 摘要: 传统弹坑相似律存在适用性和有效性不足的问题,且爆炸成坑离心试验中的科氏力作用尚不明确。开展了砂土中的触地、浅埋爆炸成坑离心模型试验,探究不同重力加速度、药量和埋深工况下的爆炸成坑规律。推导了浅埋和触地爆炸弹坑相似律,给出了弹坑半径公式。对离心模拟爆炸成坑过程中的科氏力作用进行了定量分析和数值模拟。研究结果表明:提出的弹坑相似律能够适用于触地和浅埋爆炸工况,并针对干砂中的离心机试验和常重力试验弹坑数据取得了良好的归一化结果。科氏力主要通过改变土体抛掷回落运动轨迹来影响最终的弹坑形态,浅埋爆炸成坑试验中明显观察到科氏力的影响,弹坑轮廓向着离心机转动方向偏移;触地爆炸弹坑则基本不受科氏力影响。使用更大半径的离心机设备以及在更高离心加速度下开展试验可以显著减小科氏力引起的弹坑偏移误差。研究结果对爆炸成坑效应的离心物理模拟技术和理论分析提供了参考和依据。
    Abstract: There are shortcomings in generality and applicability for the traditional crater scaling laws, and the Coriolis effects on explosion cratering in centrifuge tests are still unclear. The centrifuge modelling including buried and surface explosions is performed to investigate the cratering effects under different centrifugal accelerations, charge weights and buried depths. The scaling laws on buried and surface explosion craters are derived, and the formula for the crater radius is given. The quantitative analysis and numerical simulation of the Coriolis effects on explosion cratering are carried out. The results show that the proposed crater scaling laws can be applied to both the buried and surface explosions in dry sand, and good uniformity is obtained for the crater data from both the centrifuge tests and 1g tests. The Coriolis force primarily affects the profile of the apparent crater by changing the motion trajectory of sand particles, and it is obviously observed in the buried explosion tests, and the crater profile is asymmetric and shift in the direction of centrifuge rotation. However, the Coriolis force has a negligible effect on the surface explosion cratering. The crater offset error can be significantly reduced by using a centrifuge with a larger beam radius and conducting tests at higher centrifugal accelerations. The research results provide reference and a basis for the centrifugal modelling and theoretical analysis of explosion cratering.
  • 图  1   定制微型爆源

    Figure  1.   Fabricated explosive charges

    图  2   离心模型布置

    Figure  2.   Layout of centrifuge models

    图  3   浅埋爆炸抛掷成坑过程(CE-1试验组)

    Figure  3.   Cratering process of buried explosion test CE-1

    图  4   浅埋爆炸弹坑轮廓及剖面图(CE-1试验组)

    Figure  4.   Apparent crater profiles of buried explosion test CE-1

    图  5   触地爆炸弹坑轮廓及剖面图(CE-2~CE-4试验组)

    Figure  5.   Apparent crater profiles of surface explosion tests CE-2~CE-4

    图  6   Schmidt砂土中浅埋爆炸弹坑相似律验证与标定

    Figure  6.   Validation and calibration of Schmidt's scaling law for buried explosion crater in sand

    图  7   本文砂土中浅埋爆炸弹坑相似律验证与标定

    Figure  7.   Validation and calibration of proposed scaling law for buried explosion crater in sand

    图  8   本文砂土中触地爆炸弹坑相似律验证与标定

    Figure  8.   Validation and calibration of proposed scaling law for surface explosion crater in sand

    图  9   触地爆炸试验弹坑相似关系(CE-2~CE-4)

    Figure  9.   Similarities of surface explosion tests CE-2~CE-4

    图  10   离心模型坐标系

    Figure  10.   Coordinate system in centrifuge

    图  11   爆炸成坑中土颗粒抛掷轨迹模拟(CE-1试验组)

    Figure  11.   Simulation of motion trajectory of sand particles in buried explosion test CE-1

    图  12   土颗粒落点模拟与试验结果对比(CE-1试验组)

    Figure  12.   Comparison of simulated and experimental results of drop points of sand particles in buried explosion test CE-1

    图  13   弹坑偏移量随离心机半径和离心加速度变化

    Figure  13.   Crater offset errors against centrifuge radius for different centrifugal accelerations

    表  1   离心试验工况

    Table  1   Test conditions

    试验编号 爆源当量/mg 爆源埋深/cm 离心加速度/g
    CE-1 1000 8 106
    CE-2 1000 0 31
    CE-3 125 0 62
    CE-4 25 0 106
    下载: 导出CSV
  • [1]

    MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances[J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815-4835. doi: 10.1007/s11831-021-09553-2

    [2] 波克罗夫斯基Г И, 费多罗夫И С. 在变形介质中冲击与爆破作用[M]. 刘清荣, 黄文彬, 译. 北京: 中国工业出版社, 1965.

    POKROVSKY G I, FYODOROV I S. Impact and Explosion Effects in a Deformable Medium[M]. LIU Qingrong, Huang Wenbin, Trans. Beijing: China Industry Press, 1965. (in Chinese)

    [3] HENRYCH J. 爆炸动力学及其应用[M]. 熊建国, 译. 北京: 科学出版社, 1987.

    HENRYCH J. The Dynamics of Explosion and its Use[M]. XIONG Jianguo, trans. Beijing: Science Press, 1987. (in Chinese)

    [4]

    BAKER W E, WESTINE P S, DODGE F T. Similarity methods in engineering dynamics: theory and practice of scale modeling[M]. Amsterdam: Elsevier, 1991.

    [5]

    SCHMIDT R M. A centrifuge cratering experiment: development of a gravity-scaled yield parameter[C]// Impact and Explosion Cratering. New York, 1977.

    [6]

    SCHMIDT R M, HOLSAPPLE K A. Centrifuge Crater Scaling Experiment Ⅰ: Granular Soils[R]. Seattle: Boeing Aerospace Company, 1978.

    [7]

    SCHMIDT R M, HOLSAPPLE K A. Centrifuge Crater Scaling Experiment Ⅱ: Material Strength Effects[R]. Seattle, Washington, USA: Boeing Aerospace Company, 1979.

    [8]

    SCHMIDT R M, HOLSAPPLE K A. Theory and experiments on centrifuge cratering[J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B1): 235-252. doi: 10.1029/JB085iB01p00235

    [9]

    GOODINGS D J, FOURNEY W L, DICK R D. Geotechnical Centrifuge Modeling of Explosion Induced Craters: A Check for Scaling Effects[R]. Maryland: The University of Maryland, 1988.

    [10]

    BROWNELL K C, CHARLIE W A. Centrifuge Modeling of Explosion-induced Craters in Unsaturated Sand[R]. Fort Collins: Colorado State University, Fort Collins, 1992.

    [11]

    HANSEN C, PAK R Y S. Centrifuge characterization of buried, explosive-induced soil ejecta kinematics and crater morphology[J]. Journal of Dynamic Behavior of Materials, 2016, 2(3): 306-325. doi: 10.1007/s40870-016-0067-1

    [12] 马立秋, 张建民. 黏性土爆炸成坑和地冲击传播的离心模型试验研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3172-3178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1076.htm

    MA Liqiu, ZHANG Jianmin. Centrifugal model testing study of explosion-induced craters and propagation of ground shock in clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3172-3178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1076.htm

    [13] 范一锴, 陈祖煜, 梁向前, 等. 砂中爆炸成坑的离心模型试验分析方法比较[J]. 岩石力学与工程学报, 2011, 30(增刊2): 4123-4128. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2102.htm

    FAN Yikai, CHEN Zuyu, LIANG Xiangqian, et al. Comparison of three methods for geotechnical centrifuge model tests of explosion cratering in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 4123-4128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2102.htm

    [14]

    KUTTER B L, O'LEARY L M, THOMPSON P Y. Centrifugal modeling of the effect of blast loading on tunnels [C]// Addendum to Proceedings of the Second Symposium on the Interaction of Non-Nuclear Munitions with Structures. FL, USA, 1985.

    [15]

    GILL J J, KUENNEN S T. Half-space modeling of explosively-formed craters[C]// Proceedings of the International Conference on Centrifuge. 1991.

    [16]

    HOLSAPPLE K A, SCHMIDT R M. On the scaling of crater dimensions: 1. Explosive processes[J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B12): 7247-7256. doi: 10.1029/JB085iB12p07247

    [17]

    STEEDMAN R S. Centrifuge modeling for dynamic geotechnical studies[C]// Proceedings: 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. MO, USA, 1991.

    [18]

    HOLSAPPLE K A, Housen K R. Craters from impacts and explosions V 2.2. 2[DB/OL]. http://keith.aa.washington.edu/craterdata/scaling/index.htm, 2017.

    [19] 钱七虎. 岩石爆炸动力学的若干进展[J]. 岩石力学与工程学报, 2009, 28(10): 1945-1968. doi: 10.3321/j.issn:1000-6915.2009.10.001

    QIAN Qihu. Some advances in rock blasting dynamics[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945-1968. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.001

    [20]

    MANDAL J, GOEL M D, AGARWAL A K. Underground structures subjected to various blast loading scenarios: a scoping review[J]. Archives of Computational Methods in Engineering, 2022, 29(4): 2491-2512. doi: 10.1007/s11831-021-09664-w

    [21]

    PIEKUTOWSKI A J. Laboratory-scale High-explosive Cratering and Ejecta Phenomenology Studies[R]. NM, USA: Air Force Weapons Lab, Air Force Systems Command, 1974.

    [22] 凌道盛, 施昌宇, 郑建靖, 等. 离心模型试验物质运动非惯性系效应[J]. 岩土工程学报, 2021, 43(2): 226-235. doi: 10.11779/CJGE202102002

    LING Daosheng, SHI Changyu, ZHENG Jianjing, et al. Non-inertial effects on matter motion in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 226-235. (in Chinese) doi: 10.11779/CJGE202102002

    [23]

    CATALFAMO R S. Dynamic modeling of speed skiing[J]. American Journal of Physics, 1997, 65(12): 1150-1156. doi: 10.1119/1.18753

    [24]

    CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution[J]. Science China Technological Sciences, 2022, 65(12): 2791-2808. doi: 10.1007/s11431-022-2125-x

  • 期刊类型引用(2)

    1. 占鑫杰,吕冲,桂书润,李振亚. 化学调质及固结作用下市政污泥水分转化规律. 科学技术与工程. 2025(05): 2057-2065 . 百度学术
    2. 张玉伟,宋战平,谢永利. 孔隙变化条件下黄土土水特征曲线预测模型. 岩土工程学报. 2022(11): 2017-2025 . 本站查看

    其他类型引用(4)

图(13)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-08-06
  • 网络出版日期:  2023-11-26
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回