• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

岩石节理接触特征尺寸效应的数值试验研究

龚耕, 李升连, 张国华, 熊峰, 唐志成

龚耕, 李升连, 张国华, 熊峰, 唐志成. 岩石节理接触特征尺寸效应的数值试验研究[J]. 岩土工程学报, 2024, 46(7): 1481-1490. DOI: 10.11779/CJGE20230673
引用本文: 龚耕, 李升连, 张国华, 熊峰, 唐志成. 岩石节理接触特征尺寸效应的数值试验研究[J]. 岩土工程学报, 2024, 46(7): 1481-1490. DOI: 10.11779/CJGE20230673
GONG Geng, LI Shenglian, ZHANG Guohua, XIONG Feng, TANG Zhicheng. Numerical experiments on scale effects of contact characteristics of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1481-1490. DOI: 10.11779/CJGE20230673
Citation: GONG Geng, LI Shenglian, ZHANG Guohua, XIONG Feng, TANG Zhicheng. Numerical experiments on scale effects of contact characteristics of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1481-1490. DOI: 10.11779/CJGE20230673

岩石节理接触特征尺寸效应的数值试验研究  English Version

基金项目: 

国家自然科学基金面上项目 42177165

国家自然科学基金面上项目 42277173

地质探测与评估教育部重点实验室主任基金项目 GLAB2023ZR03

详细信息
    作者简介:

    龚耕(1996—),男,博士研究生,主要从事岩石力学和渗流方面的研究工作。E-mail: gonggeng@cug.edu.cn

    通讯作者:

    唐志成, zctang@cug.edu.cn

  • 中图分类号: TU451

Numerical experiments on scale effects of contact characteristics of rock joints

  • 摘要: 为探究岩石节理接触特征尺寸效应,采用自仿射分形方法构建系列尺寸数值模型,利用离散弹塑性计算方法求解闭合变形,定量分析节理接触特征尺寸效应规律,并探究不同岩性和粗糙度对其尺寸效应的影响差异。自仿射分形方法构建的岩石节理其粗糙程度随尺寸增加逐渐变小,接触面积比和组合形貌微凸体参数之间具有关联,接触面积比的尺寸效应可归因于组合形貌微凸体参数ηR的尺寸变化。岩石节理尺寸越大,闭合变形引起的塑性部分占比越多。塑性变形对接触面积比尺寸效应具有弱化作用,对闭合变形尺寸效应具有强化作用,硬岩节理的接触特征尺寸效应强于软岩节理,其接触特征代表性长度也更大。岩石节理的粗糙度对其闭合变形和接触面积比的尺寸效应具有相反的效果。
    Abstract: To investigate the scale effects of contact characteristics in rock joints, a series of numerical models for joint sets with different sizes are generated using the self-affine fractal enlargement method. Subsequently, the normal contact problems are solved using a discrete elastic-plastic normal closure model. The contact characteristics in rock joints are analyzed quantitatively, and the effects of lithology and roughness of rock joints are also investigated. The roughness of the self-affine enlarged rock joints decreases with size. Moreover, there is a close correlation between the contact area ratio and the asperity parameters of the composite topography. The scale effects of the contact area ratio can be attributed to the variation of the combined asperity parameters of the composite topography ηR with size. Additionally, the plastic components of normal closures increase with the joint size. The plastic deformation has weakening effects on the size effects of the contact area ratio, but strengthening effects on the size effects of closure deformation. The hard rock joints have a stronger scale effect of contact characteristics than the soft rock joints, and the representative lengths are also longer. The roughness of the rock joints has a contrary effect on the scale effects of the normal closure deformation and contact area ratio.
  • 图  1   节理闭合接触计算方法示意

    Figure  1.   Schematic diagram of closure model for rock joints

    图  2   节理二维组合形貌[20]

    Figure  2.   Two-dimensional composite topography of joints[20]

    图  3   节理表面形貌

    Figure  3.   Morphologies of rock joints

    图  4   试验数据与计算数据比较

    Figure  4.   Comparison between experimental and simulation data for a granodiorite rock joint

    图  5   不同尺寸节理的初始平均隙宽

    Figure  5.   Initial mean apertures of rock joints with variation in size

    图  6   微凸体形貌参数尺寸变化

    Figure  6.   Variation of asperity morphology parameters with size

    图  7   节理A的闭合变形特征

    Figure  7.   Normal closure characteristics in rock joint A

    图  8   节理A的接触比变化情况

    Figure  8.   Contact area ratios of rock joint A

    图  9   接触比与微凸体参数关系

    Figure  9.   Correlations between asperity morphology parameters and contact area ratio

    图  10   节理A的接触应力累计概率分布

    Figure  10.   Accumulated probability distribution of contact stress of rock joint A

    图  11   变形模式对节理A的闭合接触特征尺寸效应的影响

    Figure  11.   Influences of deformation types on size effects of closure and contact characteristics in rock joint A

    图  12   不同法向应力下节理闭合接触特征与尺寸关系

    Figure  12.   Correlations of closure and contact characteristics of rock joints under different normal stresses

    表  1   模型的力学参数

    Table  1   Mechanical parameters of numerical models

    弹性模量E/GPa 泊松比ν 压痕硬度H/GPa 单轴抗压强度UCS/MPa
    25 0.2 3.5 150
    下载: 导出CSV

    表  2   组合形貌微凸体参数与接触比间的相关性

    Table  2   Correlations between composite morphology asperity parameters and contact area ratio

    法向应力/MPa 组合形貌参数的相关性R2
    η R σs β ηR ησs Rσs
    10 0.97 0.76 0.73 0.5 0.99 0.17 0.76
    50 0.96 0.72 0.69 0.45 0.98 0.20 0.73
    下载: 导出CSV
  • [1] 唐志成, 夏才初, 焦玉勇, 等. 岩石工程节理力学[M]. 北京: 科学出版社, 2023.

    TANG Zhicheng, XIA Caichu, JIAO Yuyong, et al. Rock Engineering Joint Mechanics[M]. Beijing: Science Press, 2023. (in Chinese)

    [2] 李博, 崔逍峰, 莫洋洋, 等. 法向应力作用下砂岩错位裂隙变形行为研究[J]. 岩土力学, 2021, 42(7): 1850-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107010.htm

    LI Bo, CUI Xiaofeng, MO Yangyang, et al. Deformation behavior of dislocated sandstone fractures subject to normal stresses[J]. Rock and Soil Mechanics, 2021, 42(7): 1850-1860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107010.htm

    [3] 俞缙, 赵晓豹, 赵维炳, 等. 改进的岩石节理弹性非线性法向变形本构模型研究[J]. 岩土工程学报, 2008, 30(9): 1316-1321. doi: 10.3321/j.issn:1000-4548.2008.09.009

    YU Jin, ZHAO Xiao-bao, ZHAO Wei-bing, et al. Improved nonlinear elastic constitutive model for normal deformation of rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1316-1321. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.09.009

    [4] 王思维, 李建春. 节理接触面积比对压缩波传播影响的动光弹实验研究[J]. 岩石力学与工程学报, 2021, 40(5): 939-947. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105008.htm

    WANG Siwei, LI Jianchun. Dynamic photoelastic experimental study on the influence of joint contact area ratio on stress wave propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 939-947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105008.htm

    [5]

    LI B, ZHAO Z H, JIANG Y J, et al. Contact mechanism of a rock fracture subjected to normal loading and its impact on fast closure behavior during initial stage of fluid flow experiment[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(13): 1431-1449. doi: 10.1002/nag.2365

    [6]

    TANG Z C, ZHANG Z F, ZUO C Q, et al. Peak shear strength criterion for mismatched rock joints: Revisiting JRC-JMC criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 147: 104894. doi: 10.1016/j.ijrmms.2021.104894

    [7]

    TATONE B S A, GRASSELLI G. An investigation of discontinuity roughness scale dependency using high-resolution surface measurements[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 657-681. doi: 10.1007/s00603-012-0294-2

    [8]

    GIWELLI A A, SAKAGUCHI K, GUMATI A, et al. Shear behaviour of fractured rock as a function of size and shear displacement[J]. Geomechanics and Geoengineering, 2014, 9(4): 253-264. doi: 10.1080/17486025.2014.884728

    [9]

    FARDIN N, STEPHANSSON O, JING L R. The scale dependence of rock joint surface roughness[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 659-669. doi: 10.1016/S1365-1609(01)00028-4

    [10]

    BAHAADDINI M, HAGAN P C, MITRA R, et al. Scale effect on the shear behaviour of rock joints based on a numerical study[J]. Engineering Geology, 2014, 181: 212-223. doi: 10.1016/j.enggeo.2014.07.018

    [11]

    LI Y Z, CUI Y, GAN Y X, et al. Investigation of the real contact area of tensile fractures with different normal stresses and sizes by using pressure-sensitive films[J]. Engineering Geology, 2023, 314: 107010. doi: 10.1016/j.enggeo.2023.107010

    [12] 刘丹, 黄曼, 洪陈杰, 等. 基于代表性取样的节理岩体抗压强度尺寸效应试验研究[J]. 岩石力学与工程学报, 2021, 40(4): 766-776. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104010.htm

    LIU Dan, HUANG Man, HONG Chenjie, et al. Experimental study on size effect of compressive strength of jointed rock mass based on representative sampling[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 766-776. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104010.htm

    [13]

    RE F, SCAVIA C, ZANINETTI A. Variation in contact areas of rock joint surfaces as a function of scale[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 254.e1-254.e12.

    [14]

    BORRI-BRUNETTO M, CARPINTERI A, CHIAIA B. Scaling phenomena due to fractal contact in concrete and rock fractures[M]// BAŽANT Z P, RAJAPAKSE Y D S. Fracture Scaling. Dordrecht: Springer, 1999: 221-238.

    [15]

    MARACHE A, RISS J, GENTIER S. Experimental and modelled mechanical behaviour of a rock fracture under normal stress[J]. Rock Mechanics and Rock Engineering, 2008, 41(6): 869-892. doi: 10.1007/s00603-008-0166-y

    [16]

    BROWN S R, SCHOLZ C H. Closure of rock joints[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4939-4948. doi: 10.1029/JB091iB05p04939

    [17]

    KLING T, VOGLER D, PASTEWKA L, et al. Numerical simulations and validation of contact mechanics in a granodiorite fracture[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2805-2824. doi: 10.1007/s00603-018-1498-x

    [18]

    SWAN G. Determination of stiffness and other joint properties from roughness measurements[J]. Rock Mechanics and Rock Engineering, 1983, 16(1): 19-38. doi: 10.1007/BF01030216

    [19]

    TANG Z C, WU Z L, ZOU J P. Appraisal of the number of asperity peaks, their radii and heights for three-dimensional rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 153: 105080. doi: 10.1016/j.ijrmms.2022.105080

    [20] 唐志成, 黄润秋, 焦玉勇, 等. 考虑基体变形和微凸体变形相互作用的岩石节理闭合变形理论模型[J]. 岩土工程学报, 2017, 39(10): 1800-1806. doi: 10.11779/CJGE201710007

    TANG Zhicheng, HUANG Runqiu, JIAO Yuyong, et al. Theoretical closure model for rock joints considering interaction of deformations of substrate deformation and asperity[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1800-1806. (in Chinese) doi: 10.11779/CJGE201710007

    [21]

    OGILVIE S R, ISAKOV E, GLOVER P W J. Fluid flow through rough fractures in rocks. Ⅱ: a new matching model for rough rock fractures[J]. Earth and Planetary Science Letters, 2006, 241(3/4): 454-465.

    [22]

    TSE R, CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 303-307.

    [23]

    VOGLER D, SETTGAST R R, ANNAVARAPU C, et al. Experiments and simulations of fully hydro-mechanically coupled response of rough fractures exposed to high-pressure fluid injection[J]. Journal of Geophysical Research (Solid Earth), 2018, 123(2): 1186-1200. doi: 10.1002/2017JB015057

    [24]

    OLSON J E. Sublinear scaling of fracture aperture versus length: an exception or the rule?[J]. Journal of Geophysical Research (Solid Earth), 2003, 108(B9): 2413.

    [25]

    POON C Y, BHUSHAN B. Surface roughness analysis of glass-ceramic substrates and finished magnetic disks, and Ni-P coated Al-Mg and glass substrates[J]. Wear, 1995, 190(1): 89-109. doi: 10.1016/0043-1648(95)06764-7

    [26]

    GIWELLI A A, SAKAGUCHI K, MATSUKI K. Experimental study of the effect of fracture size on closure behavior of a tensile fracture under normal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 462-470.

    [27]

    FARDIN N. Influence of structural non-stationarity of surface roughness on morphological characterization and mechanical deformation of rock joints[J]. Rock Mechanics and Rock Engineering, 2008, 41(2): 267-297. doi: 10.1007/s00603-007-0144-9

    [28]

    HOBDAY C, WORTHINGTON M H. Field measurements of normal and shear fracture compliance[J]. Geophysical Prospecting, 2012, 60(3): 488-499.

    [29]

    BARTON N, BANDIS S, BAKHTAR K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(3): 121-140.

    [30]

    YOSHIOKA N. The role of plastic deformation in normal loading and unloading cycles[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B8): 15561-15568.

  • 期刊类型引用(13)

    1. 满轲,柳宗旭,商艳,宋志飞,刘晓丽,苏宝. 基于灰色关联分析下深度学习盾构姿态预测模型. 工程科学与技术. 2025(02): 203-213 . 百度学术
    2. 满轲,曹子祥,刘晓丽,宋志飞,柳宗旭,刘汭琳,武立文. 地质突变条件下基于组合模型的围岩等级和TBM掘进参数预测. 河海大学学报(自然科学版). 2024(01): 55-62 . 百度学术
    3. 邓志兴,谢康,李泰灃,苏谦,韩征,肖宪普. 基于机器学习的高铁边坡位移预测不确定性度量与应用. 中国铁道科学. 2024(01): 56-67 . 百度学术
    4. 姜浩,郑亚强,金治军,马庆,董强,郑德焰,林峰,赵炳武. 基于ANN算法的钢结构安装工程质量状态评价. 化工管理. 2024(06): 102-109 . 百度学术
    5. 郝晶晶,段鹏鑫,陈雨欣,段晓晨. 基于IGWO-SVR的地铁车站投资预测. 铁道学报. 2024(05): 179-188 . 百度学术
    6. 张洁. 新疆超长隧洞TBM智能掘进施工方法研究. 黑龙江水利科技. 2024(08): 123-125 . 百度学术
    7. 林平,李有鹏,谭彬. 基于Bootstrap方法和LSSVM模型的滑坡位移区间预测. 测绘与空间地理信息. 2024(09): 48-51+56 . 百度学术
    8. 张琦,甘超,曹卫华. 大洋钻探过程钻速在线区间预测方法——以微型钻探船室内模拟实验为例. 钻探工程. 2024(05): 45-52 . 百度学术
    9. 赵高峰,姜宝元,芮福鑫,马洪素,李洁勇,赵晓豹,龚秋明. 基于数值仿真的复杂岩体TBM掘进性能评估模型. 中南大学学报(自然科学版). 2023(03): 984-997 . 百度学术
    10. 常建涛,乔子萱,孔宪光,杨胜康,罗才文. 多维非线性特征重构与融合的复杂产品工期预测方法. 机械工程学报. 2023(06): 294-308 . 百度学术
    11. 禹海涛,朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析. 隧道与地下工程灾害防治. 2023(03): 19-26 . 百度学术
    12. 彭继慎,郝茗,宋立业,李希桐. 基于TSSA-SVR算法的TBM掘进速度预测. 辽宁工程技术大学学报(自然科学版). 2023(05): 634-640 . 百度学术
    13. 闫静,张雪英,李凤莲,陈桂军,黄丽霞. 结合栈式监督AE与可变加权ELM的回归预测模型. 计算机工程. 2022(08): 62-69+76 . 百度学术

    其他类型引用(11)

图(12)  /  表(2)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  64
  • PDF下载量:  84
  • 被引次数: 24
出版历程
  • 收稿日期:  2023-07-14
  • 网络出版日期:  2023-10-22
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回