• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于超大型三轴试验和原型监测的堆石料模型参数缩尺效应修正

邹德高, 刘京茂, 宁凡伟, 孔宪京, 崔更尧, 金伟, 湛正刚

邹德高, 刘京茂, 宁凡伟, 孔宪京, 崔更尧, 金伟, 湛正刚. 基于超大型三轴试验和原型监测的堆石料模型参数缩尺效应修正[J]. 岩土工程学报, 2024, 46(12): 2476-2483. DOI: 10.11779/CJGE20230667
引用本文: 邹德高, 刘京茂, 宁凡伟, 孔宪京, 崔更尧, 金伟, 湛正刚. 基于超大型三轴试验和原型监测的堆石料模型参数缩尺效应修正[J]. 岩土工程学报, 2024, 46(12): 2476-2483. DOI: 10.11779/CJGE20230667
ZOU Degao, LIU Jingmao, NING Fanwei, KONG Xianjing, CUI Gengyao, JIN Wei, ZHAN Zhenggang. Modification of scale effects of constitutive model parameters using super large-scale triaxial tests and in-situ monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2476-2483. DOI: 10.11779/CJGE20230667
Citation: ZOU Degao, LIU Jingmao, NING Fanwei, KONG Xianjing, CUI Gengyao, JIN Wei, ZHAN Zhenggang. Modification of scale effects of constitutive model parameters using super large-scale triaxial tests and in-situ monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2476-2483. DOI: 10.11779/CJGE20230667

基于超大型三轴试验和原型监测的堆石料模型参数缩尺效应修正  English Version

基金项目: 

国家自然科学基金项目 52109114

国家自然科学基金项目 52192674

国家自然科学基金项目 52079023

云南省重大科技专项计划 202102AF080002

详细信息
    作者简介:

    邹德高(1973—),男,教授,博士生导师,主要从事高土石坝和核电工程抗震安全评价、计算土力学和数值分析方法、粗粒土测试技术和本构理论等方面的研究。E-mail: zoudegao@dlut.edu.cn

    通讯作者:

    宁凡伟, E-mail: ningfw@dlut.edu.cn

  • 中图分类号: TU411

Modification of scale effects of constitutive model parameters using super large-scale triaxial tests and in-situ monitoring data

  • 摘要: 根据常规大型三轴(最大颗粒粒径60 mm)试验堆石料模型参数计算的土石坝变形值与原型监测值存在显著的差异,但导致其差异的因素及其影响程度仍不清。采用中国首台超大型三轴仪(最大颗粒粒径200,160 mm)及大型三轴仪,对5座世界级高坝筑坝堆石料开展了力学特性缩尺效应(包括缩尺方法、颗粒尺寸效应)试验研究,系统分析了本构模型(邓肯E-BE-μ模型,广义塑性模型)对坝体计算变形的影响,结合两河口心墙坝和阿尔塔什面板坝的监测资料探讨了缩尺效应规律和本构模型的合理性,明晰了缩尺方法、颗粒尺寸效应以及本构模型三类误差是高土石坝计算失真的主要原因。研究结果表明:控制孔隙率一致时,混合法缩尺相比相似级配法会高估堆石料的模量,相似级配缩尺方法更加合理;基于相似级配法时,常规大型三轴试验相比超大型三轴会高估堆石料的模量,超大型三轴试验成果与实际工程监测资料反演结果十分接近,可以认为基本消除了尺寸效应影响;广义塑性模型计算结果(尤其是水平位移)比邓肯E-BE-μ模型更符合实际。针对工程中应用最多的邓肯E-BE-μ模型参数提出了缩尺效应分类修正方法,易于对大型三轴试验参数进行修正,避免低估大坝沉降变形。研究成果有助于深入理解堆石料缩尺效应及不同本构模型的影响,可为同类工程变形预测提供可靠的试验与数值计算依据。
    Abstract: The significant discrepancy between the calculated deformation values based on the traditional large-scale triaxial test results on rockfill materials (with the maximum particle size of 60 mm) and the monitoring data from the prototype dam raises concerns about the factors causing this difference and their respective influences. The scale effects (including scaling methods and particle size effects) of the mechanical properties of rockfill materials in five world-class high dams are investigated using the first super large-scale triaxial apparatus in China (with the maximum particle sizes of 200 mm and 160 mm) as well as a large-scale triaxial apparatus. The influences of the constitutive models (such as the Duncan E-B and E-μ models, and generalized plasticity model) on the calculation of dam deformations are examined. Additionally, by incorporating the monitoring data from Lianghekou and Aertashi dams, the rules of the scale effects and the rationality of constitutive models are explored, thereby clarifying that the errors related to the scaling methods, particle size effects and constitutive models are the primary causes of distortion in the calculations of high rockfill dams. The research findings indicate that under the same void ratio, the mixed-scale method tends to overestimate the modulus of rockfill materials compared to the parallel grading method. Moreover, the traditional large-scale triaxial tests based on the parallel grading method tend to overestimate the modulus of rockfill materials compared to the results obtained from the super large-scale triaxial tests, which effectively eliminate the size effects. Furthermore, the calculations based on the generalized plasticity model, particularly in terms of horizontal displacement, are more in line with the actual observations than those based on the Duncan E-B and E-μ models. Finally, a scale effect classification correction method for model parameters is proposed specifically for the Duncan E-B and E-μ models. The research outcomes contribute to a deeper understanding of the scale effects of rockfill materials and the influences of different constitutive models. They also provide reliable experimental and numerical calculation references for the deformation prediction in similar engineering projects.
  • 图  1   研究思路图

    Figure  1.   Research roadmap

    图  2   堆石料原型级配曲线

    Figure  2.   Particle-size distribution of prototype rockfill

    图  3   如美英安岩不同缩尺方法条件下应力-应变-体变关系曲线

    Figure  3.   (σ1-σ3)-εa and εv-εa relations of Rumei rockfill in different scaling methods

    图  4   如美英安岩不同最大粒径条件下应力-应变-体变关系曲线(σ3=1.5 MPa)

    Figure  4.   (σ1-σ3)-εa and εv-εa relations of Rumei rockfill with different dmax (σ3=1.5 MPa)

    图  5   阿尔塔什面板坝反演与实测沉降对比(竣工期)

    Figure  5.   Comparison between simulated and measured settlements of Aertashi CFRD after construction

    图  6   两河口心墙坝反演与实测沉降对比(竣工期)

    Figure  6.   Comparison between simulated and measured settlements of Lianghekou core rockfill dam after construction

    图  7   阿尔塔什试验结果与反演参数拟合结果对比

    Figure  7.   Comparison between test results and those simulated by parameters from back analysis of Aertashi rockfill

    图  8   0+475 m断面1711 m高程实测与计算变形量对比

    Figure  8.   Comparison between simulated and measured settlements of Aertashi CFRD

    图  9   二维面板坝计算等值线结果

    Figure  9.   Contour lines of displacement of 2D CFRD

    表  1   缩尺方法研究试验控制条件

    Table  1   Control conditions in tests for scaling methods

    试验材料 孔隙率/% 制样干密度/
    (g·cm-3)
    围压σ3/
    MPa
    缩尺方法
    如美
    英安岩
    20 2.107 0.4, 1.0, 2.0 相似级配法,
    混合法
    阿尔塔什灰岩 19 2.155 0.5, 1.0, 1.5
    两河口
    板岩
    21 2.147 0.5, 1.0, 1.5
    下载: 导出CSV

    表  2   不同缩尺方法条件下邓肯E-BE-ν模型参数

    Table  2   E-B and E-ν model parameters in different scaling methods

    试验材料 缩尺方法 共同参数 邓肯E-B参数 邓肯E-ν
    φ0/(°) Δφ/(°) K n Rf Kb m G F D
    如美英安岩 混合法 57.9 10.8 1450 0.42 0.78 1190 0.05 0.40 0.15 7.8
    相似级配法 54.3 8.5 1200 0.45 0.80 900 0.06 0.37 0.15 7.8
    两河口板岩 混合法 52.2 10.4 1085 0.25 0.73 295 0.09 0.36 0.19 6.0
    相似级配法 50.2 9.4 850 0.26 0.75 225 0.10 0.32 0.19 6.0
    阿尔塔什灰岩 混合法 53.4 9.0 1390 0.38 0.79 750 0.01 0.37 0.14 5.6
    相似级配法 52.6 8.7 1150 0.40 0.82 582 0.02 0.35 0.14 5.6
    下载: 导出CSV

    表  3   试验控制条件

    Table  3   Control conditions in tests for particle size

    试验
    材料
    孔隙率/% 制样干密度/(g·cm-3) 最大粒径/mm 围压σ3/
    MPa
    如美
    英安岩
    20 2.107 60, 160, 200 0.4, 1.0, 1.5, 2.0
    阿尔塔什灰岩 19 2.155 60, 160 0.5, 1.0, 1.5
    两河口
    板岩
    21 2.147 60, 160 0.5, 1.5, 2.5
    拉哇角
    闪片岩
    18 2.438 60, 160 0.5, 1.5, 2.5
    古水
    玄武岩
    18 2.269 60, 160 0.5, 1.5, 2.5
    下载: 导出CSV

    表  4   不同最大粒径条件下邓肯E-BE-μ模型参数

    Table  4   E-B and E-ν model parameters for different particle sizes

    试验材料 最大粒径/
    mm
    共同参数 邓肯E-B参数 邓肯E-ν
    φ0/(°) Δφ/(°) K n Rf Kb m G F D
    如美英安岩 60 54.3 8.5 1200 0.45 0.80 900 0.06 0.37 0.15 7.8
    160 52.5 7.6 1020 0.42 0.75 700 0.01 0.34 0.15 7.8
    200 52.2 7.6 980 0.41 0.74 680 0.01 0.33 0.15 7.8
    阿尔塔什灰岩 60 52.6 8.7 1150 0.40 0.82 582 0.02 0.35 0.14 5.6
    160 50.2 6.5 980 0.37 0.74 420 0.05 0.33 0.14 5.6
    两河口板岩 60 50.2 9.4 850 0.26 0.75 225 0.10 0.32 0.19 6.0
    160 49.8 7.4 720 0.25 0.71 170 0.06 0.30 0.19 6.0
    拉哇角闪片岩 60 53.7 9.8 1721 0.25 0.68 780 0.12 0.37 0.13 5.8
    160 52.5 9.3 1356 0.27 0.71 570 0.10 0.33 0.13 5.8
    古水玄武岩 60 54.4 11.1 2054 0.35 0.86 720 0.11 0.38 0.16 8.1
    160 54.7 11.3 1620 0.32 0.84 530 0.09 0.34 0.16 8.1
    下载: 导出CSV

    表  5   二维面板坝计算结果对比(模型修正)

    Table  5   Comparison of calculated results for 2D CFRD (Modification of model parameters) 单位:%

    本构模型 竖向沉降差(与广义塑性模型相比)
    修正前 修正后
    邓肯E-B 26 3
    邓肯E-μ 25 2
    下载: 导出CSV

    表  6   邓肯E-BE-μ模型参数分类修正系数

    Table  6   Parameter correction coefficients considering scaling effects and constitutive model for E-B and E-μ models

    本构模型 修正参数 修正系数
    缩尺方法
    (混合法)
    颗粒
    尺寸效应
    本构
    误差/%
    邓肯E-B K 0.75~0.80 0.75~0.85 1.17
    Kb 0.75~0.80 0.70~0.75 1.26
    邓肯E-μ K 0.75~0.80 0.75~0.85 1.17
    G 0.89~0.93 0.89~0.94 1.06
    下载: 导出CSV
  • [1] 孔宪京, 邹德高. 紫坪铺面板堆石坝震害分析与数值模拟[M]. 北京: 科学出版社, 2014.

    KONG Xianjing, ZOU Degao. Seismic Damage Analysis and Numerical Simulation of Zipingpu Concrete Face Rockfill Dam[M]. Beijing: Science Press, 2014. (in Chinese)

    [2]

    MA H Q, CHI F D. Technical progress on researches for the safety of high concrete-faced rockfill dams[J]. Engineering, 2016, 2(3): 332-339. doi: 10.1016/J.ENG.2016.03.010

    [3] 郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1999.

    GUO Qingguo. Engineering Character and Application of Aggregate Soil[M]. Zhengzhou: Yellow River Water Press, 1999. (in Chinese)

    [4] 周伟, 常晓林, 马刚, 等. 堆石体缩尺效应研究进展分析[J]. 水电与抽水蓄能, 2017, 3(1): 17-23.

    ZHOU Wei, CHANG Xiaolin, MA Gang, et al. Analysis on the research development of rockfill scale effect[J]. Hydropower and Pumped Storage, 2017, 3(1): 17-23. (in Chinese)

    [5] 武利强, 朱晟, 章晓桦, 等. 粗粒料试验缩尺效应的分析研究[J]. 岩土力学, 2016, 37(8): 2187-2197.

    WU Liqiang, ZHU Sheng, ZHANG Xiaohua, et al. Analysis of scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2016, 37(8): 2187-2197. (in Chinese)

    [6] 傅华, 韩华强, 凌华. 堆石料级配缩尺方法对其室内试验结果的影响[J]. 岩土力学, 2012, 33(9): 2645-2649.

    FU Hua, HAN Huaqiang, LING Hua. Effect of grading scale method on results of laboratory tests on rockfill materials[J]. Rock and Soil Mechanics, 2012, 33(9): 2645-2649. (in Chinese)

    [7] 孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2019, 41(2): 255-261. doi: 10.11779/CJGE201902002

    KONG Xianjing, NING Fanwei, LIU Jingmao, et al. Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255-261. (in Chinese) doi: 10.11779/CJGE201902002

    [8] 沈珠江. 鲁布革心墙堆石坝变形的反馈分析[J]. 岩土工程学报, 1994, 16(3): 1-13. doi: 10.3321/j.issn:1000-4548.1994.03.001

    SHEN Zhujiang. Feedback analysis of deformation of Lubuge core rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 1-13. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.03.001

    [9] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Tesing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [10]

    MARSCHI N D, CHAN C K, SEED H B. Evaluation of properties of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(1): 95-114. doi: 10.1061/JSFEAQ.0001735

    [11]

    VARADARAJAN A, SHARMA K G, VENKATACHALAM K, et al. Testing and modeling two rockfill materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 206-218. doi: 10.1061/(ASCE)1090-0241(2003)129:3(206)

    [12]

    BOLTON M D, LAU C K. Scale effects arising from particle size[C]//Proceedings of the International Conference on Geotechnical Centrifuge Modeling. Paris, 1988: 127-131.

    [13] 混凝土面板堆石坝设计规范: DL/T 5016—2011[S]. 北京: 中国电力出版社, 2011.

    Design Code for Concrete Face Rockfill Dams: DL/T 5016—2011[S]. Beijing: China Electric Power Press, 2011. (in Chinese)

    [14]

    NING F W, LIU J M, KONG X, et al. Critical state and grading evolution of rockfill material under different triaxial compression tests[J]. International Journal of Geomechanics, 2020, 20: 04019154. doi: 10.1061/(ASCE)GM.1943-5622.0001550

    [15] 孔宪京, 刘京茂, 邹德高. 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38(11): 1941-1947. doi: 10.11779/CJGE201611002

    KONG Xianjing, LIU Jingmao, ZOU Degao. Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1941-1947. (in Chinese) doi: 10.11779/CJGE201611002

    [16] 汪小刚. 高土石坝几个问题探讨[J]. 岩土工程学报, 2018, 40(2): 203-222. doi: 10.11779/CJGE201802001

    WANG Xiaogang. Discussion on some problems observed in high earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 203-222. (in Chinese) doi: 10.11779/CJGE201802001

    [17] 李翀, 何昌荣, 王琛, 等. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, 2008, 29(增刊1): 563-566.

    LI Chong, HE Changrong, WANG Chen, et al. Study on size effect of large-scale triaxial test of coarse grained materials[J]. Rock and Soil Mechanics, 2008, 29(S1): 563-566. (in Chinese)

    [18]

    XIAO Y, LIU H L, CHEN Y M, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests: Ⅰ influences of density and pressure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 4014070. doi: 10.1061/(ASCE)GT.1943-5606.0001176

    [19] 陈生水, 凌华, 米占宽, 等. 大石峡砂砾石坝料渗透特性及其影响因素研究[J]. 岩土工程学报, 2019, 41(1): 26-31. doi: 10.11779/CJGE201901002

    CHEN Shengshui, LING Hua, MI Zhankuan, et al. Experimental study on permeability and its influencing factors for sandy gravel of Dashixia Dam[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 26-31. (in Chinese) doi: 10.11779/CJGE201901002

    [20] 宁凡伟. 基于超大型三轴仪的筑坝粗粒料缩尺效应研究[D]. 大连理工大学, 2020.

    NING Fanwei. Research on the Scale Effect of Coarse Grained Materials Based on Super Large Triaxial Apparatus[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)

    [21]

    LE PEN L M, POWRIE W, ZERVOS A, et al. Dependence of shape on particle size for a crushed rock railway ballast[J]. Granular Matter, 2013, 15(6): 849-861. doi: 10.1007/s10035-013-0437-5

    [22] 刘宝琛, 张家生, 杜奇中, 等. 岩石抗压强度的尺寸效应[J]. 岩石力学与工程学报, 1998, 17(6): 611-614.

    LIU Baochen, ZHANG Jiasheng, DU Qizhong, et al. A study of size effect for compression strength of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 611-614. (in Chinese)

    [23]

    LIU J M, ZOU D G, NING F W, et al. A unified constitutive model for instantaneous elastic-plastic and time-dependent creep behaviour of gravelly soils under complex loading[J]. Canadian Geotechnical Journal, 2023, 60(11): 1613-1628.

    [24]

    LIU J M, ZOU D G, KONG X. A two-mechanism soil-structure interface model for three-dimensional cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44: 2042-2069.

    [25] 宁凡伟, 孔宪京, 邹德高, 等. 筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响[J]. 岩土工程学报, 2021, 43(2): 263-270. doi: 10.11779/CJGE202102006

    NING Fanwei, KONG Xianjing, ZOU Degao, et al. Scale effect of rockfill materials and its influences on deformation and stress analysis of Aertashi CFRD[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 263-270. (in Chinese) doi: 10.11779/CJGE202102006

    [26] 邹德高, 姜秋婷, 刘京茂, 等. 超高土石坝心墙孔压不均匀分布特征及其机理研究[J]. 水利学报, 2022, 53(12): 1467-1475, 1489.

    ZOU Degao, JIANG Qiuting, LIU Jingmao, et al. Characteristics and mechanism of inhomogeneous pore pressure of core wall in super-high rockfill dam[J]. Journal of Hydraulic Engineering, 2022, 53(12): 1467-1475, 1489. (in Chinese)

    [27] 章为民, 沈珠江. 混凝土面板堆石坝三维弹塑性有限元分析[J]. 水利学报, 1992, 23(4): 75-78.

    ZHANG Weimin, SHEN Zhujiang. Three-dimensional elastic-plastic finite element analysis of concrete face rockfill dam[J]. Journal of Hydraulic Engineering, 1992, 23(4): 75-78. (in Chinese)

  • 期刊类型引用(1)

    1. 潘鹏志,王兆丰,封雨捷,李雨芯. 深空探测任务中岩土力学若干问题及研究进展. 岩土力学. 2024(11): 3153-3172 . 百度学术

    其他类型引用(0)

图(9)  /  表(6)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-07-16
  • 网络出版日期:  2024-05-29
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回