土坡张拉缝滑面稳定性评价的若干基本问题

    刘学军, 宋飞, 张鲁渝, 侯宪明, 哈月龙

    刘学军, 宋飞, 张鲁渝, 侯宪明, 哈月龙. 土坡张拉缝滑面稳定性评价的若干基本问题[J]. 岩土工程学报, 2024, 46(7): 1418-1426. DOI: 10.11779/CJGE20230596
    引用本文: 刘学军, 宋飞, 张鲁渝, 侯宪明, 哈月龙. 土坡张拉缝滑面稳定性评价的若干基本问题[J]. 岩土工程学报, 2024, 46(7): 1418-1426. DOI: 10.11779/CJGE20230596
    LIU Xuejun, SONG Fei, ZHANG Luyu, HOU Xianming, HA Yuelong. Several basic problems in stability evaluation of sliding surface of soil slopes with tension cracks[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1418-1426. DOI: 10.11779/CJGE20230596
    Citation: LIU Xuejun, SONG Fei, ZHANG Luyu, HOU Xianming, HA Yuelong. Several basic problems in stability evaluation of sliding surface of soil slopes with tension cracks[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1418-1426. DOI: 10.11779/CJGE20230596

    土坡张拉缝滑面稳定性评价的若干基本问题  English Version

    基金项目: 

    国家自然科学基金项目 52278328

    中建新疆建工科技研发课题 65000022859700210197

    详细信息
      作者简介:

      刘学军(1970—),男,新疆伊犁人,新疆首届勘察大师,正高级工程师,主要从事岩土工程科研及生产工作。E-mail:liuxuejun7@cscec.com

      通讯作者:

      宋飞, E-mail: songf1980@163.com

    • 中图分类号: TU413.6

    Several basic problems in stability evaluation of sliding surface of soil slopes with tension cracks

    • 摘要: 围绕张拉缝滑面稳定性评价中存在的若干基础性问题,通过上千个算例,系统分析了两种易混淆的“忽略”方法的可行性和适应性,以及它们在不同张拉缝深度,不同几何形状滑面、不同安全系数方法等条件下对滑面稳定性的影响,主要结论为:①张拉缝未充水时,方法一仅对简化Janbu、简化Bishop法适用,而对通用条分法GLE、不平衡推力法不适用。张拉缝考虑水压力时,方法一不适用,方法二适用。②张拉缝滑面安全系数的变化趋势曲线,与张拉缝开裂前的条间力是拉力还是压力有关,这又与黏聚力、张拉缝深度、安全系数方法相关。如果黏聚力低,则条间力大概率是压力,如黏聚力高,则条间力大概率为拉力。③张拉缝有利于迭代收敛,对于严格法GLE而言,张拉缝促进收敛的效果更明显。本文成果为科学评估张拉缝滑面的稳定性提供了坚实的理论依据和分析方法。
      Abstract: Focusing on some basic problems in stability evaluation of the sliding surface with tension cracks, the feasibility and adaptability of the two kinds of confusing "ignoring" methods are analyzed through over a thousand examples, and their effects on the stability of sliding surfaces with tension cracks are also investigated under different depths of tension cracks, different geometric shapes of sliding surfaces (arc, polyline, combination), different methods of safety factor. The main conclusions are drawn as follows: (1) When the tension cracks are not filled with water, the first kind of method is only applicable to the simplified Janbu and Bishop methods, but not to GLE and unbalanced thrust methods. Also, the first kind of method does not work when the water pressure is applied, only the second kind of method works. (2) The curve of the safety factor with tension cracks is related to whether the inter-slice force before cracks happen is tension or pressure, which is also related to the soil cohesion, depth of the tension cracks and methods of safety factor. If the cohesion is low, the inter-slice force is more likely to be pressure, and if the cohesion is high, the inter-slice force is more likely to be tension. (3) It's conducive to the convergence of the iterative solution by setting tension cracks in analysis, especially for the strict methods, such as GLE. The research results may provide a solid theoretical and feasible analysis method for scientifically evaluating the stability of the sliding surfaces with tension cracks.
    • 图  1   莫尔库仑修正准则

      Figure  1.   Mohr-Coulomb correction criterion

      图  2   莫尔库仑-抗拉截切屈服面

      Figure  2.   Mohr-Coulomb-tensile cut-off yield surface

      图  3   张拉缝深度线模式

      Figure  3.   Patterns of depth line of tension cracks

      图  4   指定张拉缝

      Figure  4.   Designated tension cracks

      图  5   同一张拉缝对应的不同滑面

      Figure  5.   Different sliding surfaces corresponding to same crack

      图  6   滑面随张拉缝深度变化示意图

      Figure  6.   Variation of sliding surface with depth of tension cracks

      图  7   张拉缝滑面简图

      Figure  7.   Sketch of sliding surface of tension cracks

      图  8   土条受力分析图

      Figure  8.   Force analysis diagram of soil strip

      图  9   分析方案分解图

      Figure  9.   Diagram of analysis plan

      图  10   圆弧滑面位置分布图

      Figure  10.   Distribution of positions of circular sliding surface

      图  11   组合滑面位置分布图

      Figure  11.   Distribution of positions of combined sliding surface

      图  12   折线滑面位置分布

      Figure  12.   Distribution of positions of folded line sliding surface

      图  13   安全系数偏差平均值随张拉缝深度变化曲线

      注:GLE-通用条分法、Imb-不平衡推力、Jan-简化Janbu、Bis-简化Bishop、Poly-折线滑面、Arc-圆弧、Com-组合。

      Figure  13.   Variation of mean value of deviation of safety factor with depth of tension cracks

      图  14   方法一的若干虚线

      Figure  14.   Several dashed lines for first kind of method

      图  15   张拉缝安全系数偏差-标准差曲线

      Figure  15.   Deviation-standard deviation of safety factor

      图  16   安全系数偏差 < 5%的滑面数量占比

      Figure  16.   Proportion of deviation of safety factor of sliding surface samller than 5%

      图  17   误差最大滑面的几何特征和位置分布

      Figure  17.   Geometric characteristics and location distribution of sliding surface with maximum error

      图  18   简化Janbu法湿缝与干缝偏差

      Figure  18.   Deviation of safe factor for wet vs dry cracks by Janbu method

      表  1   组合滑面收敛情况(GLE)

      Table  1   Convergence of combined sliding surface (GLE)

      组合滑面 张拉缝深度/m
      0 1 1.5 2 2.5 3
      GLE/滑面数 1 滑面总数 265 265 264 264 263 262
      2 由不收敛转收敛 29 39 50 54 56
      3 由收敛转不收敛 0 0 0 0 0
      4 2、3项均不收敛 70 41 30 19 14 11
      下载: 导出CSV
    • [1]

      CHOWDHURY R, FLENTJE P, BHATTACHARYA G. Geotechnical Slope Analysis[M]. Boca Raton: CRC Press, 2009.

      [2]

      DWIANTARA M S, FARIS F, FATHANI T F. Effect of tension crack on slope stability in rainfall conditions[C]// Construction: The Formation of Living Envionment. Moscow, 2023.

      [3]

      DUNCAN J M, WRIGHT S G. Soil Strength and Slope Stability[M]. Newyork: John Wiley & Sons Inc, 2005

      [4] 樊明尊, 宋飞, 刘学军. 直立面板式格室挡墙主动土压力计算方法探讨[J]. 地基处理, 2022, 4(2): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL202202005.htm

      FAN Mingzun, SONG Fei, LIU Xuejun. Calculation method of active soil pressure on vertical panel retaining wall[J]. Journal of Ground Improvement, 2022, 4(2): 126-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL202202005.htm

      [5]

      US Army Corps of Engineers. Engineering and Design: Slope Stability, 2003, Engineer Manual 1110-2-1902[S]. 2003.

      [6]

      BELANDRIA N, ÚCAR R, CORREDOR A, et al. Safety factor on rock slopes with tensile cracks using numerical and limit equilibrium models[J]. Geotechnical and Geological Engineering, 2021, 39(3): 2287-2300. doi: 10.1007/s10706-020-01624-8

      [7]

      ZHU L X, ZHOU Z J, CHEN L, et al. Limit equilibrium theory-based investigation on the critical tension crack depth in loess slope[J]. Environmental Earth Sciences, 2021, 80(9): 349. doi: 10.1007/s12665-021-09641-3

      [8]

      MICHALOWSKI R L. Stability of intact slopes with tensile strength cut-off[J]. Géotechnique, 2017, 67(8): 720-727. doi: 10.1680/jgeot.16.P.037

      [9]

      SENIOR R B. Tensile strength, tension cracks, and stability of slopes[J]. Soils and Foundations, 1981, 21(2): 1-17. doi: 10.3208/sandf1972.21.2_1

      [10]

      ZHANG T, LIN S T, ZHENG H, et al. Location of tension cracks at slope crests in stability analysis of slopes[J]. Geotechnics, 2022, 2(3): 488-505. doi: 10.3390/geotechnics2030024

      [11] 张鲁渝. 应力空间岩土本构模型的三维图像[J]. 岩土工程学报, 2005, 27(1): 64-68. http://cge.nhri.cn/cn/article/id/11557

      ZHANG Luyu. The 3D images of geotechnical constitutive models in the stress space[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 64-68. (in Chinese) http://cge.nhri.cn/cn/article/id/11557

      [12]

      ZHANG S, CHOWDHURY R. Identification of critical slope failure surfaces with critical tension cracks[C]// The 30th U S Symposium on Rock Mechanics (USRMS). Morgantown, 1989.

      [13]

      SPENCER E. Effect of tension on stability of embankments[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(5): 1159-1173. doi: 10.1061/JSFEAQ.0001185

      [14] 王根龙, 伍法权, 李巨文, 等. 公路岩质边坡后缘张裂缝发生位置的预测方法[J]. 工程地质学报, 2007, 15(增刊1): 498-501. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ200709001098.htm

      WANG Genlong, WU Faquan, LI Juwen, et al. Forecasting method of tensile crack's position occurred at rear of express way rock slope[J]. Journal of engineering geology, 2007, 15(S1): 498-501. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ200709001098.htm

      [15] 邓东平, 李亮, 赵炼恒. 河岸边坡稳定性及张裂缝最不利位置研究[J]. 中南大学学报(自然科学版), 2013, 44(9): 3873-3883. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201309044.htm

      DENG Dongping, LI Liang, ZHAO Lianheng. Critical position of tensile cracks and stability analysis in slope near river[J]. Journal of Central South University (Science and Technology), 2013, 44(9): 3873-3883. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201309044.htm

      [16] 张年学, 李晓, 盛祝平. 用拐点原理计算滑坡后沿张裂缝深度的新公式[J]. 工程地质学报, 2018, 26(1): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801017.htm

      ZHANG Nianxue, LI Xiao, SHENG Zhuping. The new formula of calculating depth of a tension crack in the upper surface of a sliding slope using inflection principle[J]. Journal of Engineering Geology, 2018, 26(1): 157-163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801017.htm

      [17]

      SASEKARAN M. Impact of Permeability and Surface Cracks on Soil Slopes[D] Mancheste: University of Manchester, 2011.

      [18] 建筑边坡工程技术规范: GB 50330—2013[S]. 北京: 中国建筑工业出版社, 2013.

      Technical Code for Building Slope Engineering: GB 50330—2013[S]. Beijing: China Architecture and Building Press, 2013. (in Chinese)

      [19] 丰定祥, 吴家秀, 葛修润. 边坡稳定性分析中几个问题的探讨[J]. 岩土工程学报, 1990, 12(3): 1-9. http://cge.nhri.cn/cn/article/id/9368

      FENG Dingxiang, WU Jiaxiu, GE Xiurun. Some problems of slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(3): 1-9. (in Chinese) http://cge.nhri.cn/cn/article/id/9368

      [20]

      BAO Y D, LI Y C, ZHANG Y S, et al. Investigation of the role of crown crack in cohesive soil slope and its effect on slope stability based on the extended finite element method[J]. Natural Hazards, 2022, 110(1): 295-314. doi: 10.1007/s11069-021-04947-8

      [21]

      ABRAMSON L W, LEE T S, SHARMA S, et al. Slope stability and stabilization methods[M]. 2nd ed. New York: John Wiley & Sons Inc, 2002.

      [22] 张鲁渝, 郑颖人, 时卫民. 边坡稳定分析中关于不平衡推力法的讨论[J]. 岩石力学与工程学报, 2005, 24(1): 177-182. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050100W.htm

      ZHANG Luyu, ZHENG Yingren, SHI Weimin. On slope stability analysis by imbalance thrust force method[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 177-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050100W.htm

      [23] 张鲁渝. 一个用于边坡稳定分析的通用条分法[J]. 岩石力学与工程学报, 2005, 24(3): 496-501. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050300O.htm

      ZHANG Luyu. Generalized limit equilibrium method for slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 496-501. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050300O.htm

      [24]

      MALKAWI A I H, HASSAN W F, SARMA S K. Global search method for locating general slip surface using Monte Carlo techniques[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(8): 688-698. doi: 10.1061/(ASCE)1090-0241(2001)127:8(688)

      [25] 张鲁渝. 边坡稳定分析软件ZSlope的开发[J]. 岩石力学与工程学报, 2004, 23(16): 2830-2835. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200416031.htm

      ZHANG Luyu. Development of software zslope for slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(16): 2830-2835. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200416031.htm

      [26] 张鲁渝, 张建民. 基于滑面段旋转的Monte Carlo搜索技术及改进(Ⅰ): 转角大小随机[J]. 岩土力学, 2006, 27(11): 1902-1908. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200612020.htm

      ZHANG Luyu, ZHANG Jianmin. Modified Monte Carlo techniques by rotating slip segments for searching general critical slip surface(Ⅰ): random angle of rotation[J]. Rock and Soil Mechanics, 2006, 27(11): 1902-1908. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200612020.htm

      [27] 张鲁渝, 张建民. 基于滑面段旋转的Monte Carlo搜索技术及改进(Ⅱ): 常值转角[J]. 岩土力学, 2006, 27(12): 2197-2202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200612020.htm

      ZHANG Luyu, ZHANG Jianmin. The extended Monte Carlo techniques by rotating slip segments for searching general critical slip surface(Ⅱ): constant angle of rotation[J]. Rock and Soil Mechanics, 2006, 27(12): 2197-2202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200612020.htm

      [28]

      DONALD I, GIAM P. The ACADS slope stability programs review[C]// International Symposium on Landslides. Melbournc, 1995.

    图(18)  /  表(1)
    计量
    • 文章访问数:  0
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-06-29
    • 网络出版日期:  2024-07-11
    • 刊出日期:  2024-06-30

    目录

      /

      返回文章
      返回